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Abstract — We describe over 40 single-winner voting sys-

tems, and elucidate their most important properties.
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1 Notation

In all descriptions we shall assume there are N candidates
and V voters, and the goal is to select a single winning candi-
date and to do so in ≤ polynomial(N, V ) steps. (NP-hard
[5] election algorithms will not be considered here.1) Un-
less otherwise stated, all ties are broken randomly. Schulze
[66] suggested breaking ties by choosing a random ballot and
breaking the tie in the manner that voter wanted (which, if
votes are full preference orderings, always suffices).

In all the voting systems we list, each “vote” is one of the
following.

§4 Ignored. (Example: random winner.)
§5 The name of a single candidate. (Examples: “plurality”

and “bullet” voting.)
§6 A “preference ordering” among the candidates, that is,

a permutation of the set {1, 2, 3, . . . , N}. (Examples:
Borda, Condorcet, Dodgson, IRV, etc.)

§7 A real N -vector, that is, N real numbers. (Sometimes
these real numbers x are required to satisfy some con-
dition, e.g. in “range voting” we demand 0 ≤ x ≤ 1 and
in “approval voting” we demand x ∈ {0, 1}.)

§8 In “sarvo-range voting” each vote is both a real N -vector
of numbers x satisfying 0 ≤ x ≤ 1 and one additional
bit (the “strategy bit”).

Anybody trying to employ one of these systems in a real elec-
tion would have to resolve many nasty “real-world” details
(such as what to do if voters refuse to rank all the candidates
in Condorcet’s system) which we ignore here – we merely aim
to describe the simplest possible variant of each system.2

In the systems based on real N -vectors, we shall often make
use of the sum-vector ~s.

In the systems based on preference orderings, if all candidates
are ignored, except for two (A and B) in each preference order-
ing, then the result would be a 2-candidate election between
A and B, with some winning margin

MAB = #votes for A−#votes for B (1)

which would be positive if A wins and negative if B wins. We
shall often make use of this N ×N antisymmetric matrix M .
Another useful N ×N matrix is U , where Ukj is the number
of voters who prefer k to j. Then M = U − UT .

If MWA > 0 for all A 6= W then W is a “Condorcet-Winner.”
(A better name might be “beats-all-winner.”) Condorcet-
Winners need not exist (either because of a tie, or because
there can be a “preference cycle”), but if one does exist, it
plainly is unique.

#voters their vote
4 A > B > C
3 B > C > A
2 C > A > B

Figure 1.1. 9-voter example of a Condorcet cycle: for each
candidate, some other is preferred by a majority. N

We single out the following “prototypical” systems for special
attention: Plurality, Borda, Condorcet-Least-Reversal, IRV,
Clarke-Tideman-Tullock, and Range.

2 Which vote-count and margins

matrices are possible?

This problem is fundamental to voting theory, and also had
not previously been posed and solved, so we do that here.
Readers who want to skip the math and plunge directly into
descriptions of voting systems should skip to section 4.

In a V -voter election, the vote-count matrix U obeys UAB +
UBA = V for A 6= B (since we have required full rank order-
ings as votes, i.e. with no omissions allowed), UAB ≥ 0, and
UAA = 0.

But not every matrix obeying these conditions is actually
achieveable in an election. Only matrices that arise as
weighted sums of actual single-vote-representing matrices are
achievable, where the “weights” are the number of voters
who cast that vote. In other words, a U -matrix obeying
UAB + UBA = V is achievable if and only if the following
integer program has a solution:

∑

π∈SN

wπQπ = U

︸ ︷︷ ︸

(N

2
) equalities

, wπ ≥ 0
︸ ︷︷ ︸

N ! inequalities

. (2)

Here there are “
(
N
2

)
equalities” since only the upper triangle

of U matters and it contains
(
N
2

)
entries (the lower trian-

gle is determined automatically by antisymmetry). Here Qπ

is the single-vote-representing matrix got by permuting both
the rows and the columns of the upper-triangular N ×N ma-
trix with all-1’s above the diagonal and 0’s elsewhere, by the
N -permutation π ∈ SN (and SN denotes the group of N !

1 H.P.Young in 1975 suggested minimizing (over choice of W ) the number of voters whose entire preference-order votes have to be ignored, in
order to cause W to be the Condorcet-Winner. We point out that this is this is NP-hard by an easy reduction from 3-dimensional matching [29].
Kemeny suggested finding the rank-ordering of the candidates which was “closest” to the rank-orderings provided by the voters in the sense that
it had the minimum number of pairwise reversals. This too is NP-hard (it is essentially a traveling salesman problem). J.Rothe and H.Spakowski
have indeed claimed to have shown that it is P NP

‖
-complete to determine Young and Kemeny winners. Slater’s (1961) version of Condorcet voting,

in which one first finds an ordering of the candidates compatible with the M -matrix – or if no ordering is compatible with it, we find the one
compatible with an altered version of M requiring the minimum number of sign reversals of its elements – and a related version in which we minimize
the sum of the absolute values of the elements in MAB whose sign is incompatible with the ordering, both are NP-hard. (See also footnote 4.) The
“Max-Tourneys” ranked-ballot voting method is probably also NP-hard: Consider all of the meaningfully different ways of seeding a (fixed balanced
binary tree) single elimination tournament among the N candidates. The candidate that wins the most such tournaments (counting pairwise ties
in the logical manner, e.g. half a win for a 2-way tie) wins. ‘

2In preference-order-based systems, the emerging consensus seems to be that unranked candidates should be ranked co-equally and beneath
all ranked candidates. Usually when some algorithm designed for the full-ranking case compares two “victory margins” MAB , it is a good idea to
replace that comparison by a lexicographic comparison of 2-tuples (UAB , MAB).
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permutations of N items):3

Qπ
def
= Pπ















0 1 1 · · · 1 1

0 0 1 1 · · · 1

0 0 0 1 · · · 1

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0















PT
π (3)

and wπ are the (non-negative integer) weights. In other words,
wπ is the number of voters with vote π and Qπ is the U -matrix
resulting from the single vote π. This is a linear program
with N ! non-negative integer variables wπ obeying

(
N
2

)
equal-

ity constraints. For many purposes (i.e. if you do not care
about an overall re-scaling) we may ignore the integrality con-
straints, thus instead getting a rational solution, since then
a genuine integer solution – albeit to a rescaled problem with
more voters – may always be got by multiplying everything
by the least common denominator.

Linear programs are usually phrased as an optimization prob-
lem, rather than merely an existence problem. We can do that
too by asking for the wπ ’s which maximize

∑

π∈SN

wπcπ (4)

for any particular N ! constants cπ we desire. For example if
we choose the cπ’s to form a sufficiently rapidly exponentially
decreasing positive sequence then this will find the lexico-
graphically minimum vote-set which achieves our U -matrix.
The given U -matrix is achieveable (up to rescaling) if and
only if this linear program has a solution (which, if it exists,
will necessarily be bounded). For the sole purpose of deciding
whether suitable wπ exist, however, optimization is irrelevant,
and we may regain that irrelevancy by setting cπ ≡ 0.

The dual form [20] of this linear program has
(
N
2

)
variables

YAB (of unrestricted sign) for 1 ≤ A < B ≤ N , now obeying
N ! inequality constraints:

∑

1≤A<B≤N

YAB (Qπ)AB ≥ cπ (5)

and with our above formulation of the primal problem as a
max imization problem, the dual problem is to minimize

∑

1≤A<B≤N

YABUAB (6)

by choice of the YAB ’s. It follows from the duality theorem of
linear programming [20] that our given U -matrix is achieve-
able (up to rescaling) if and only if this dual linear program
has a finite optimal solution (no matter what the cπ’s are),
and is unachieveable if and only if this dual problem has an
unbounded optimal solution.

How difficult are the primal and the dual problems? We know
the primal feasibility problem is in NP because any point in-
side a convex d-polytope is a convex combination of at most
d + 1 of the vertices. Therefore in the primal LP, U may
be taken to be a convex combination of at most

(
N
2

)
+ 1 of

the Qπ, and we may specify the solution by specifying the
(
N
2

)
+ 1 permutations π and positive weights wπ . We suspect

that the problem is in fact NP-complete when N is allowed to
become large, because (1) the problem of detecting a violated
constraint in the dual problem is NP-complete (cf. footnote
1 re Slater voting), and (2) the “optimal digraph ordering”
problem (find an ordering of the vertices of a directed graph,
which minimizes the number of arcs, or more generally the
weight-sum of arcs, that point backwards)4 is NP-complete
[61][35][53][29].

Three examples: The reader may enjoy confirming that the
following U -matrix






∗ 1 14

17 ∗ 2

4 16 ∗




 (7)

is unachieveable in a 3-candidate elections with 18 voters, but
the U -matrix in EQ 26 is achieveable and the M -matrix in
EQ 21 may easily be chosen to make it achieveable. N

One may similarly write the corresponding difficult integer lin-
ear program that defines the achievable victory-margins ma-
trices M (obeying MAB + MBA = 0):

M =
∑

π∈SN

wπMπ

︸ ︷︷ ︸

(N

2
) equalities

, wπ ≥ 0
︸ ︷︷ ︸

N ! inequalities

. (8)

Here Mπ is the matrix got by permuting both the rows and
the columns of the anti-symmetric N × N matrix with all
+1’s above the diagonal and all −1’s below it (and 0s on the
diagonal) by the N -permutation π:

Mπ
def
= Pπ















0 +1 +1 · · · +1 +1

−1 0 +1 +1 · · · +1

−1 −1 0 +1 · · · +1

...
...

...
. . .

...
...

−1 −1 · · · −1 0 +1

−1 −1 · · · −1 −1 0















PT
π (9)

and wπ are non-negative integer weights. This again is a linear
program with N ! non-negative integer variables wπ obeying
(
N
2

)
equality constraints. Its dual form is

∑

1≤A<B≤N

YAB (Mπ)AB ≥ cπ

︸ ︷︷ ︸

N ! inequalities

(10)

3Here Pπ denotes the permutation matrix corresponding to the permutation π. A permutation matrix is a matrix all of whose entries are 0
except for exactly one nonzero entry in each row and in each column; all of these nonzero entries being 1. The effect of multiplying an N-vector
by an N × N is to permute its entries, hence the name. The inverse P−1 of a permutation matrix P is the same thing as its transpose P T .

4 This has also been called the “linear ordering problem.” It also is equivalent both to the problem of finding the maximum-edge-cardinality
acyclic subgraph of a digraph, and to the “minimum feedback arc set” problem of finding the minimum set of arcs whose deletion from a digraph
leaves it acyclic, and to this problem: given an 0-1 (or more generally integer) square matrix M , find a permutation of its rows and columns (using
the same permutation for both) which maximizes the sum of the entries in its upper triangle.
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Our given M -matrix is achieveable (up to scaling) if and only
if the primal problem has a real solution, which happens if
and only if the dual problem has a bounded optimal solution.

3 Some combinatorics: the number
of kinds of votes

If permissible“votes”are rank-orderings of N candidates, then
there are N ! possible votes: 0! = 1! = 1, 2! = 2, 3! = 6,
4! = 24, 5! = 120, etc. The factorial function obeys the re-
currence N ! = (N − 1)! · N and arises from the generating
function

∑

N≥0 xN/N ! = ex.

If the “votes” instead are rank-orderings of N candidates with
equalities allowed (e.g. a possible vote is “A > B = C =
D > E = F > G”), then there are E(N) possible votes
where E(0) = E(1) = 1, E(2) = 3, E(3) = 13, E(4) = 75,
E(5) = 541, and we may calculate other E(N) from

E(N) =
∑

k≥1

(k − 1)N

2k
=

(

x
d

dx

)n(
1

2− x

)

x=1

(11)

=

N∑

k=0

(
N

k

)

E(N − k)∼ N !

2 ln(2)N+1

or the exponential generating function (EGF)

∑

N≥0

E(N)
xN

N !
=

1

2− exp(x)
. (12)

Amazingly, E(N) is equal to the nearest integer to
N !/(2 ln(2)N+1) for N = 0, 1, . . . , 16 (and we have asymp-
toticity as N →∞) but equality fails when 17 ≤ N :

E(17) = 130370767029135901 6= 130370767029135900. (13)

If “votes” are rank-orderings of (≥ 2)-element subsets5 of the
N candidates (with the remaining candidates left unranked)
then the number S(N) of possible votes obeys S(2) = 2,
S(3) = 12, S(4) = 60, S(5) = 320, and

S(N) =

N−2∑

k=0

N !

k!
= ⌊N !e−N − 1− 1

N + 1
⌋∼N !e (14)

where e ≈ 2.71828.

One could also consider combining both of the preceding gen-
eralizations of “N !” by permitting a vote to be a ranking,
containing optional equalities, of any (≥ 0)-element subset of
the candidates. The number of possible votes then would be
∑N

k=0

(
N
k

)
E(k). The EGF for this quantity is

exp(x)

2− exp(x)
= 1 +

2

1!
x +

6

2!
x2 +

26

3!
x3 +

150

4!
x4 +

1082

5!
x5 + . . .

(15)
The Nth term of this sequence, amazingly, is the nearest in-
teger to N !/ ln(2)(N + 1) for N ≤ 15 and this also is asymp-
totically correct as N →∞, but the equality fails for N = 16.

Another stunning formula for the number of N -candidate
ranked ballots with truncation and ranking-equalities both
permitted is

∑

k≥1 kN/2k.

If a vote is a subset of the N candidates, then the number
of possible votes (i.e. subsets) is 2N . If a vote is an N -letter
word from an L-letter alphabet, then the number of possible
votes is LN .

If a vote is a partial ordering of the N candidates (example:
“A > B, B > C, B > D”; with all implications of transitivity,
such as A > C, being assumed), then [9] the number P (N) of
inequivalent possible votes obeys P (0) = P (1) = 1, P (2) = 3,
P (3) = 19, P (4) = 219, P (5) = 4231, P (6) = 130023,
P (7) = 6129859, P (8) = 431723379, P (9) = 44511042511.
No closed formula for P (N) is known. However, a remarkable
asymptotic formula is known:6

P (N) =

[

1 + O(
1

N
)

]

exp

(
ln 2

4
N2 +

3 ln 2

2
N

)(

2
√

2

πN

)1/2

CN mod 2

(16)
where

Cm =

∞∑

k=−∞

2−(m/2+k)2 ≈







2.1289312505 if m = 0

2.1289368272 if m = 1
. (17)

Finally, one could allow votes to be partial orders with equal-
ities allowed. (Example: “A > B = C, D > E, D > F .”) The
number Q(N) of inequivalent votes7 is then

Q(N) =
N∑

k=1

S(N, k)P (k)∼P (N) (18)

where S(N, k) is the Stirling number of the second kind [34]
generated by

∑

n≥k

S(n, k)
xn

n!
=

1

k!
(ex − 1)k. (19)

The Q(N) sequence begins

1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423.

4 Systems that ignore the votes

4.1 Random winner
◮ Ignore the voters and just select a winner from the candi-
dates at random (all equally likely).

4.2 Optimum winner
◮ You magically read the mind of each voter and determine
exactly how much that voter would benefit from the election
of candidate n (for each n and each voter). (How to mea-
sure “how much”? Well, one could use “dollars,” but the right

5“≥ 2” since we are only interested in nontrivial votes.
6This formula is the combined result of work by D.J.Kleitman, B.L.Rothschild, and J.L.Davison; see [21]. Its agreement with the known exact

P (N) counts when N ≤ 16, is poor. P (N) is the number of N-element “labeled posets,” or N-node “labeled (acyclic) transitive digraphs.”
7This count has also been called the number of inequivalent “quasi-orders” of N items, or the number of “finite topologies” with n labeled

elements.
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utility-units really would be more like “total lifetime happi-
ness.” Benefits can be negative or positive depending on the
candidate and the voter.) The candidate maximizing the to-
tal sum (over all voters) of benefit, wins. This would be the
best possible voting system, if it were achievable.

4.3 Worst winner

◮ Same as optimum winner, except the candidate minimizing
the benefit-sum is the winner. This would be the worst pos-
sible voting system, if it were achievable.

The importance of both this pessimal and the preceding op-
timal system is that they are achieveable inside computer
simulations of elections, i.e. involving artificial voters.

5 Systems in which each vote is the

name of a single candidate

5.1 Plurality

◮ Each voter names a single candidate as his vote. Winner is
the one named the most times. This system, despite its many
flaws, is the world’s most-used voting system.

Among the most serious of Plurality’s flaws are the“vote split-
ting”and“cloning”pathologies. These can easily allow honest
plurality voters to elect a candidate that the majority of them
rank dead last.

In the example of table 1.1, but with the final two votes
changed to C > B > A (Borda 1781) A is the Plurality win-
ner but is the Condorcet-loser. B is the Condorcet-Winner.
(This also shows how sincere approval voting, §7.7, can elect
the Condorcet-loser.)

In South Korea’s 1987 presidential election, two liberals (Kim
Dae Jung and Kim Young Sam) faced the heir (Roh Tae Woo)
of a military dictatorship. The liberals together got 55.2%
of the plurality votes but split their supporters, so Roh won
with 36.6%, then claimed a mandate to continue repressive
policies. After their defeat at the next election years later,
the militarist party’s leaders were convicted of treason for or-
dering the tragic shooting of pro-democracy demonstrators.

It is often strategically wise to vote for somebody other than
one’s favorite to avoid“wasting”one’s plurality vote. (E.g. see
table 6.5.) The strategic decision is to vote for the least-worst
among the two “frontrunners.” Over time this tends to cause
two-party domination and the morbidity of “third parties,” a
phenomenon that has been called “Duverger’s law.”

5.2 Anti-plurality (sometimes called “Bullet
voting”; perhaps better would be “veto-
voting”)

◮ Winner is the one named the fewest times.

Anti-plurality behaves extremely badly in the presence of
strategic voters: they will always try to eliminate their fa-
vorite’s greatest perceived rival, with the results that all the
pre-race favorites will be eliminated and a “dark horse” will
always win.

5.3 GR1: Gibbard’s Random Dictator
(1977) [33]

◮ Select a ballot at random (all voters equally likely) and
make the winner be the candidate named in that one vote.
(Ignore all other ballots.)

5.4 P+R: Plurality with genuine runoff

◮ Really two elections one after the other. The first round is
a plurality election with the two candidates named the most
often being the only two candidates in the second and final
round. (The second round is often avoided if the first round
produces a winner with > 50% of the votes.)

A system very much like this is used to elect the president of
France. (Compare §6.2.) Since having two elections is usu-
ally very much less desirable than having one election, the
P+I system below should be preferred.

6 Systems in which each vote is a

preference ordering of the candi-
dates

6.1 GR2: Gibbard Random pair (1977) [33]

◮ Each vote is a preference order among the candidates. Se-
lect 2 candidates at random (all pairs equally likely), then
perform a 2-candidate election among them by ignoring the
other N − 2 candidates in each preference ordering.

Both this and preceding GR1 system were introduced by Al-
lan Gibbard, who proved they were essentially the only two
voting systems in which each voter was motivated to express
his honest opinion as his preference-ordering vote. However,
as Gibbard remarks, they “leave too much to chance” to be
acceptable in practice.

6.2 P+I: Plurality with instant runoff

◮ Each vote is a preference order among the candidates. In
the first round we find the two candidates who are top-ranked
most often. In the second and final “runoff” round, we per-
form a 2-candidate election among just those two by ignoring
all the other candidates in every preference ordering.

In both P+I and P+R, it can be strategically desirable to
vote dishonestly. For example, it can be optimal to vote for
a Horrible candidate in round 1. That could cause the final
round to be Your-Favorite vs. Horrible, at which point Your-
Favorite will win. An honest vote for Your-Favorite, on the
other hand, could cause the final round to be Your-Favorite vs.
Somebody-More-Popular. Thus, honestly top-ranking Your-
Favorite can cause him to lose, and it can be better for your
cause to vote dishonestly or not vote at all.

6.3 Nauru [60]

Nauru Island, a Pacific atoll near the equator (pop.≈ 10, 000),
adopted the following voting method in 1971.

◮ Each vote is a preference order among the candidates. The
kth-ranked candidate (k = 1, . . . , N) is awarded a score of
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1/k, the scores are summed, and the candidate with the great-
est total score wins.

This is a typical “weighted positional” (WP) system with
weights wk = 1/k. In a WP system, each candidate gets a
score of wk if he is kth ranked in some vote, and the candi-
date with the greatest score-sum wins. (For some fixed real
constants w1 ≥ w2 ≥ · · · ≥ wN , not all equal.)8

6.4 Borda count (1781) [64][65][84]

Jean-Charles le Borda (1733-1799) was a French mathemati-
cian and nautical astronomer. It appears, however, that
“Borda’s” system actually had been published earlier by
Nicholas of Cusa (≈ 1400-1464).

◮ Each vote is a preference order among the candidates. We
award points to the candidates as follows: If a candidate is
Kth-ranked in a vote, he gets N − K points (1 ≤ K ≤ N).
The candidate with the most points wins.

Another way to view it: Borda is equivalent to the aggre-
gate sum of all

(
N
2

)
pairwise elections, assuming voters vote

in each pairwise election in a manner compatible with their
Borda vote; a candidate W ’s Borda score is

∑

A MWA (up to
a rescaling, which does not matter).

Another: this is weighted positional with weights wk = N−k.

The Borda system has several optimality properties (see foot-
note 14 and [65]) which seem of little relevance to the real
world.

What unfortunately seems of much greater relevance to the
real world is the fact that Borda behaves very badly in the
presence of strategic voters.9 For example, in a 3-way contest
between 3 strong candidates and 10 mediocrities, strategic
voters tend to rank their favorite candidate (usually one of
the Big Three) “top”and his two Big Rivals “bottom”because
honestly ranking all three of them near the top would give
that voter’s vote only ≈ 10% of the “discriminatory strength”
attainable through this sort of exaggeration. The trouble is:
if nearly all voters adopt this strategy, then the 3 “strong”
candidates are guaranteed to each get a below-average Borda
score so that a “dark horse” non-entity is guaranteed to win.
10 A large number of voting systems based on preference-
ordering ballots suffer from this devastating pathology, so it
is convenient to give it a name: the “DH3” (Dark Horse wins
3+-way race in the presence of strategic voters) pathology.
We shall discuss it further in table 6.4.

Observe that Borda’s response to DH3 is far worse than either
plurality, approval (§7.7) or IRV (§6.16) voting, each of which
would – quite sanely – elect one of the Big Three.

Another – even more commonly occurring – example of

Borda’s poor response to strategic voting is this. Consider a
3-candidate election in which two of the candidates are (ac-
cording to pre-election polls) extremely likely to win. Strate-
gic Borda voters always will vote the maximum for the better,
and the minimum for the worse, among these two frontrun-
ners, forcing them to rank the remaining candidate middle
(regardless of that voter’s opinion of him). Just as in Plu-
rality voting, this forces one of the two pre-election poll fron-
trunners to win, even if 90% of the voters honestly consider
the non-frontrunner to be the best.11 In contrast, under ap-
proval (§7.7) or range voting that truly-best candidate would
be elected, by either strategic or honest voters, by a large
margin. (Thus we again might expect two-party domination,
with third parties having no chance, under Borda voting.)

Since Donald Saari has written a book [65] championing
Borda voting it is worthwhile to criticize his results. Two
of the reasons Saari likes Borda voting are: (1) He consid-
ered the class of Weighted Positional Voting (WPV) systems.
He showed Borda (with honest voters) is the only fair WPV
system also satisfying “reversal symmetry.”12 Saari then con-
sidered the “dictionary” mapping the voters’s candidate pref-
erence orders (i.e. V permutations of the N candidates) into
the N -permutation output by the voting system. (2) The
more entries such a dictionary could have, the more Saari
considered a voting system “paradoxical.” Saari showed that
Borda is the uniquely least paradoxical WPV system.

Let me counterargue.

1. In [68] I’ve worked with COAF voting systems, a highly
general class. Because WPV systems are merely an in-
finitesimally tiny subclass of COAF systems there is no
reason to care about optimizing over them if we can
instead optimize over COAF.

2. In particular, range voting (§7.7) also obeys fairness
and reversal symmetry. This would not be possible (by
Saari’s theorem) if honest range voting were a WPV
system – but we evade Saari’s theorem by working in
the wider class of COAF systems.

3. It is wrong to force the input to the voting system to be
V preference permutations. Really, the true input is V
real utility N -vectors. Saari, and every WPV system,
ignore (and prevent the voter from honestly expressing)
the fact that a voter cares more about making A beat
B if UA − UB = 999, than he cares about making B
beat C if UB − UC = 0.01. (Where Un is the utility of
candidate n.)

8In votes by sportswriters for Major League Baseball’s MVP award, a positional voting system with weights (14, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, . . . , 0)
is employed.

9A frustrated Borda is alleged to have exclaimed, in reply to criticisms of this sort: “My method is only intended for honest men!”
10This in fact is exactly what happened at a certain recruitment committee meeting I once attended. This scenario is quite common in practice.

A lessened form of this pathology can occur with only two strong candidates – if they are close to being tied, then the most above-average among
the mediocrities will win. The Pacific Island Republic of Kiribati adopted Borda voting and immediately suffered from exactly this kind of problem
as the two “most popular” candidates were eliminated and two dark horses who did not campaign and were not recognized as serious contenders
were nearly elected ([60] p.368).

11Admittedly, such a candidate would probably be high ranked in the polls. I am simply trying to dramatize the fact that, in 3-candidate Borda
or plurality elections, the two candidates with the most advertising and loudest propaganda have essentially 100% chance of being elected purely
because this loudness causes rational voters to think they have a high chance of being elected, totally independent of those two candidates’s actual
or perceived virtues.

12For another characterization of Borda, see [84].
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4. Nobody cares about rank-ordering the losers! We care
about finding the winner. (Well, there are uses for a
voting system outputting a full ordering, but they are of
secondary importance.) So Saari’s “dictionary” is dom-
inated by irrelevancy.

5. Saari ignores the reality that voters are rational – in-
stead modeling them as imbeciles who always vote“hon-
estly,” no matter how tactically stupid that is.

Saari’s paradox theorem is beautiful, but do not be deluded
into thinking it tells us much about how to build a good voting
system. It doesn’t.

#voters their vote with no D
3 A > B > C > D A > B > C
2 B > C > D > A B > C > A
2 C > D > A > B C > A > B

Figure 6.1. 7-voter Borda example by Paul Johnson.

Totals: C = 13, B = 12, A = 11, D = 6.

But now suppose it is revealed that D – top ranked by nobody
and far in last place – was a criminal noncitizen and hence
ineligible to run. Remove D from all votes (right) and the
totals become

Totals: A = 8, B = 7, C = 6.

The removal of the “irrelevant” candidate D completely re-
verses the election results! N

ER-Borda (Borda with equal rankings permitted) seems very
superior to plain Borda since, e.g, it is immune to candidate-
cloning provided the voters rank the clones equally. (If they
wish to express slight preferences among the clones, then
Borda remains horribly vulnerable to cloning.)

#voters their vote with no D
51 A > B A > B1 > B2 > B3

49 B > A B1 > B2 > B3 > A

Figure 6.2. Cloning in Borda. Obviously, A wins the elec-
tion at left 51-to-49. But if the Bs are cloned into B1, B2 and
B2 in decreasing order of attractiveness (the clones are not
exactly identical), then B1 wins easily with 249. (A only gets
153.) The B party assures victory by simply entering a large
number of near-identical candidates into the race. N

ER-Borda highly resembles Range Voting (§7.7) but differs
from it in that the score-range has variable size (n with n
candidates) whereas with, e.g. 0-99 integer-score range vot-
ing it would have fixed size (100). Variable size seems to be

the worse choice because it leaves ER-Borda vulnerable to re-
moval and addition of “irrelevant” candidates as in table 6.1;
range voting is immune to that.

The Borda count has been used by the Associated Press
and ESPN/USA Today for US college basketball and football
polls; in these applications Borda might work well because
they are probably largely free of strategic voting.

6.5 Condorcet least-reversal system (1785) [86]

The Marquis de Condorcet (1743-1794) was among the ear-
liest and best investigators of voting systems. Ironically, he
died in a prison cell where he had been thrown as a plau-
sible enemy of the French revolution. Condorcet observed
that Borda’s system can elect a unique winner other than
the Condorcet-Winner, even when a Condorcet-Winner ex-
ists. More seriously, every weighted-positional scoring sys-
tem can simultaneously elect a unique winner other than the
Condorcet-Winner, even when a Condorcet-Winner exists, as
shown in figure 6.3.13

#voters their vote
5 A > B > C
4 B > C > A
2 B > A > C
2 C > A > B

Figure 6.3. 13-voter Condorcet vs WP example. A is
the unique Condorcet-Winner. However, the total numbers of
(top-ranked, mid-ranked, bottom-ranked) votes garnered are
respectively A : (5, 4, 4), B : (6, 5, 2), and C : (2, 4, 7) so that
in any weighted-positional score-sum system, no matter what
weights w1 ≥ w2 ≥ w3 (not all equal) are employed, B would
be the unique winner.14 N

We also remark that most weighted-positional systems15 will
elect B instead of the Majority-Winner A in the following sit-
uation: 50%+ ǫ of the votes are A > B > C, and 50%− ǫ are
B > C > A for sufficiently small ǫ > 0.

Condorcet therefore disparaged all weighted-positional score-
sum systems and proposed the following system which avoids
that perceived flaw.

◮ The winner is the candidate W minimizing
∑N

n=1 neg(MWn), where

neg(x)
def
=







−x if x ≤ 0

0 if x ≥ 0.
(20)

In other words, the candidate W who would win every pair-
wise election wins, but if there is no such“Condorcet-Winner”
then the candidate is chosen who would win every pairwise
election after first reversing the minimum possible number of
pairwise-comparison subvotes.

13A weaker version of our example was stated by Condorcet.
14 Gehrlein, Fishburn, and van Newenhizen [27][30][56] showed that the probability (assuming each vote is a random N-permutation) that Borda

elects a non-Condorcet-Winner (conditioned on a CW existing) is about 10% if N = 3 and there are a large number of voters. They showed that
Borda minimizes this conditional probability over all weighted-positional scoring systems, for each N ≥ 3; thus the corresponding conditional
probability for plurality voting is larger, namely ≈ 22% in the N = 3 case. Borda also is the unique weighted-positional scoring system that cannot
elect a Condorcet (or Smith) loser ([31], [65] p.192, known to E.J.Nanson in 1882). Finally, Merlin et al. [51] argued that the probability of a
situation such as the one in table 6.3 in which every weighted-positional scoring system simultaneously elects some unique winner other than the
CW is about 1.808% if N = 3.

15The exceptions are plurality with optional tie-breaking by another WP system.
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Put another way: the candidate with the minimum sum of
defeat-margins (where “defeat-margin”=0 in the case of a vic-
tory), is elected.

Unfortunately, although Condorcet’s principle may overcome
some deficiencies of the Borda system, it automatically en-
sures vulnerability to strategic manipulation in precisely the
same two scenarios (DH3 and the 3-candidate election with
two perceived “frontrunners”) which we used to criticize
Borda:

#voters their vote
51% A > C > B
49% B > C > A

#voters their vote
x1 A > D > B > C
x2 A > D > C > B
y1 B > D > C > A
y2 B > D > A > C
z1 C > D > A > B
z2 C > D > B > A

Figure 6.4. Damaging effects of strategic voting.
(left) Two perceived “frontrunners” A and B run in a 3-
way race versus C. Strategic voters, in order not to “waste
their vote,” always rank their more-favored frontrunner “top”
and their less-favored frontrunner “bottom,” forcing C to be
ranked middle regardless of the voters’ actual honest opin-
ions of C. Even if 90% of the voters honestly think C is
the best candidate, he has no chance with this kind of voters
in any voting system obeying Condorcet’s principle, because
this strategic exaggeration makes A the Condorcet-Winner.
(A also wins in the Borda, Arrow-Raynaud, and IRV sys-
tems, but C could win convincingly under Approval or Range
voting.)

(right) The minimal DH3 example, i.e. with only a single
“dark horse” candidate D. Assume A, B, C are three excel-
lent candidates and D is a mediocrity. All voters honestly
regard all three of {A, B, C} to be far superior to D, but their
opinions are split concerning the ordering within {A, B, C}.
Therefore, each voter strategically ranks his favorite top, and
his two top rivals artificially “last” (exaggerating to get more
“discriminating power”). The result is the scenario here with
x1+x2 ≈ y1+y2 ≈ z1+z2. Then the uniquely-worst candidate
D becomes the Condorcet-Winner and wins the election under
any voting system that elects Condorcet-Winners or Smith-
Set members! (However, Plurality, IRV, Approval, and Range
would elect one of {A, B, C}.) This is a common scenario in
practice and illustrates the vulnerability of systems obeying
Condorcet’s principle to strategic manipulation. N

In both examples in table 6.4, it is important to realize that,
in either the Borda or Condorcet sum-of-defeats system, each
voter is acting rationally in his own self-interest – his vote is
one that maximizes the expected election result for him, given
his prior conviction that the alphabetically-last candidate has
essentially no chance of victory. For example, if in the first
scenario some voter had honestly voted C > A > B, then

that would, in the event of a Condorcet cycle as in table 1.1,
increase A’s margin of pairwise defeat versus C and hence pos-
sibly help B to win. For a completely concrete instantiation
of that, see table 6.5.

#voters their vote
8 B > C > A
6 C > A > B
5 A > B > C

Figure 6.5. Favorite Betrayal, or how dishonest ex-
aggeration can pay. In this 19-voter example there is a
Condorcet cycle, and the winner is B under either Plurality,
Borda=Dabagh, P+I, Black, Schulze-Beatpath, IRV, Loring,
BTR-IRV, Coombs, River, Maxtree, Tideman Ranked Pairs,
Improved-Dodgson, Simpson-Kramer, Nanson, Rouse, Ray-
naud, Arrow-Raynaud, Condorcet Least Reversal, Woodall
DAC, Sarvo-Plurality, Sinkhorn, or Keener-eigenvector.16

But if the 6 C > A > B voters insincerely switch to
A > C > B (“betraying their favorite”C) then A becomes the
winner under all these voting systems (and is the Condorcet-
winner), which in their view is a better election result. N

This favorite-betrayal example is very important because,
once voters understand that exaggerating their stances on
the apparent-frontrunners can be necessary to prevent the
enemy frontrunner from winning, strategic voting is guaran-
teed, often causing “third parties” to tend to die out (since
the strategic voters will not “waste their vote” on third-party
candidates like C whom they perceive as having “no chance
of winning”). IRV proponents have sometimes falsely stated
that IRV (§6.16) eliminates the “wasted vote” phenomenon.17

Table 6.5 was a counterexample, both for IRV, and for most
other ranked-ballot systems too. However, approval (§7.7)
and range voting (§7.7) are arguably immune to this pathol-
ogy, in the sense that dishonesty is never strategically useful
in a (≤ 3)-candidate approval election.

Eventually it was realized [54][59][85][67] that every single-
winner voting method based on preference-orderings which
satisfies Condorcet’s principle (that it elects the Condorcet-
Winner whenever one exists) must exhibit

No-show paradoxes in which adjoining an additional set of
identical votes, all favoring A over B, causes A to lose
and B to win (so that these voters would have been
better off not voting).

Consistency paradoxes in which two disjoint subsets of
votes, each of which by itself elects A, when combined
elect B.

16The Smith and Fishburn sets are {A, B, C} and this example can demonstrate favorite-betrayal for them too, if, e.g. the tie-breaking method
is random choice and the utility of A is higher than average. Similarly this demonstrates favorite-betrayal for Copeland and TMR.

17Many false claims about IRV may be found on the “Center for Voting and Democracy” web site, e.g. to quote Steven Hill of the CVD: “The
instant runoff ensures the election of the candidate preferred by most voters. [False, see table 6.15.] It eliminates the problem of spoiler candidates
knocking off major candidates. [False, see table 6.5.] It frees communities of voters from splitting their vote among their own candidates. [We
discuss this at the end of §6.16.] It promotes coalition-building and more positive campaigning. [Perhaps too vague to justify, and the CVD gives
no historical evidence for it.]” The CVD is a biased IRV-advocacy organization which pretends to provide unbiased information, but in fact refuses
to correct errors of this nature.
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For a combined example of both sorts of paradox simultane-
ously in the Condorcet least-reversal system, consider

M =









∗ −5 H G

5 ∗ −3 −3

−H 3 ∗ −x

−G 3 x ∗









(21)

where x, G, H are any numbers obeying |x| ≪ G, H and where
the candidates in order are A, B, C, D. Here A is the winner
(5 reversals required). But if we add 4 A > B > C > D bal-
lots then B becomes the Condorcet-winner. (This also shows
failure of “add-top.”)

6.6 Black’s system (1958) [6]
Embarrassingly, Condorcet’s least-reversal system can, if
there are ≥ 4 candidates, elect a Condorcet loser ! In the
7-voter scenario with U -matrix18

U =









∗ 7 0 4

0 ∗ 7 4

7 0 ∗ 4

3 3 3 ∗









, (22)

the last candidate is the Condorcet-loser, i.e. a loser of every
pairwise battle. It changes to a Condorcet-Winner by making
3 preference reversals, while other candidates need at least 4
preference reversals to become a Condorcet-Winner. N

Duncan Black therefore proposed the following, in an effort
to get a system which (1) was monotonic (as is Condorcet’s
original system); (2) elects the Condorcet-Winner whenever
one exists; (3) never elects a Condorcet-loser (if there is more
than one candidate):

◮ If there is a Condorcet-Winner, he wins. Otherwise, employ
the Borda count system.

This “fix,” however, evidently does not cure all the deficien-
cies of Condorcet Least-Reversal voting; the example of EQ
21 still applies to Black voting.

6.7 ID: Improvement of Dodgson’s system
Charles Lutwidge Dodgson (1832-1898) was best known under
his pseudonym Lewis Carroll, under which he wrote famous
children’s books such as Alice in Wonderland and verse such
as The hunting of the snark. However, he was also a math-
ematician. He invented a very interesting way to evaluate
determinants in 1876, and discussed several kinds of voting
systems in pamphlets [23] also published in 1876. In his first
pamphlet Dodgson recommended Condorcet Least-Reversal
(which he apparently reinvented), but he later abandoned it.

The method Dodgson recommended in his final pamphlet is
this. Each vote is a preference order among the candidates.

The winner is the candidate W who would win every pairwise
election. But if there is no such“Condorcet-Winner”then take
the candidate who would win every pairwise election after per-
forming the minimum possible total number of adjacent inter-
changes inside the preference orderings. (If A > B > C is a
preference ordering then A > C > B is 1 adjacent-interchange
away and C > A > B is two adjacent interchanges away.)

This system is algorithmically infeasible: Hemaspaan-
dra et al [38] proved that the problem of determining the
Dodgson election winner from the votes is“Θp

2-complete,” that
is, complete among all problems soluble by a Turing machine
in polynomial time where the Turing machine is allowed, in
each step, to pose a problem to an NP-oracle, and the answers
to all the questions then come back in exactly one batch from
that oracle.

But there is a feasible variant: We now wish to point out
for the first time, however, that a voting method very simi-
lar to Dodgson’s19 is algorithmically feasible. It is this new
method which we shall, therefore, call “Dodgson’s” method.

◮ The method is this. Each vote is a preference ordering
among the N candidates and may therefore be regarded as
N points, one for each candidate, located at the locations
0, 1, 2,..., N − 1 on the real line. Let f(x) be some arbitary
but fixed increasing real-valued function of one real argument,
with the properties that f(x) = −f(−x), f(0) = 0, and f(x)
is (non-strictly) concave-∩ for x > 0. If we restrict attention
to just two candidates A and B, then each vote in which A’s
location is a distance x to the right of B’s location may be
thought of as contributing “score” f(x) to A in his pairwise
battle versus B. Let the total score by which A then beats B
(which would be negative if B beats A) be called DAB.

If some candidate W beats every other (i.e. if DWA ≥ 0 for all
A), then W wins.20 Otherwise, consider the minimum total
distance ℓW that all points besides W on the real line have to
move in order to cause W to beat (or at worst be tied with)
each other candidate. The candidate W with the minimum
ℓW is the winner.

Note: if f(x) ≡ x then this is just the Borda count sys-
tem. If f(x) = sign(x) + ǫsign(x)

√

|x| in the limit ǫ → 0+,
then it becomes Condorcet’s least-reversal method. Other
choices of f(x) would lead to other voting systems interme-
diate between the two. We shall, for concreteness, by default

use f(x)
def
=
√

|x|sign(x) – the “geometric mean” of Borda
and Condorcet – throughout this paper whenever we speak of
“Dodgson’s” method.

The reason this voting method is algorithmically feasible is
that here is a polynomial time “greedy” algorithm for evalu-
ating ℓW :

procedure Greedy-ℓW -Evaluation
1: Start with ℓ = 0.
2: Find, among all the candidates A that currently beat W ,

and among all votes, the location of a point A that is
nearest to W . (Prefer locations to the right of W , if there

18Actually, this particular U -matrix is not achieveable – which is a good illustration of the fact that not every V - or M -matrix is achieveable –
but by adding a suitably large constant to all off-diagonal entries, it becomes achieveable and the same scenario happens. This same example also
works against the Simpson-Kramer system.

19And indeed, conceivably actually the one he had in mind – Dodgson’s methods are described “by example” in such an informal manner that it
is hard to be sure exactly what he meant.

20Note, for general f this no longer forces a Condorcet-Winner to be elected, although with the choice f(x) = sign(x)+ ǫsign(x)
p

|x| in the limit
ǫ → 0+, it does.
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is a distance-tie between one on W ’s left and one on W ’s
right.)

3: Move that A-point a distance 1 to the left, and ℓ← ℓ+1.
4: Go back to step 2 until W beats (or at worst is tied with)

every other candidate.
5: Output ℓ.

The candidate W with the least ℓW wins.

Why this works: Essentially, each distance-1 movement
causes the maximum possible decrease in

∑

A neg(DWA).
This is due to the concave-∩ nature of f(x).

Another way to look at it: The fundamental structural
reason why our small modification in the definition of the
Dodgson system renders it polynomial time instead of Θp

2-
complete, is that in the modified system, the ℓW ’s may be
formulated as the solution of a convex programming problem
[36][80]. In Dodgson’s original formulation, the requirement
to move candidates one past others by pairwise interchanges
introduced nonconvexity.

Runtime: If a brute-force exhaustive search is made in step
2, then its runtime will be O(V N) steps, the runtime of the
algorithm to evaluate ℓW will be O(V 2N2) steps, and the run-
time of the full algorithm to find the winner (best W ) will be
O(V 2N3) steps. If the search instead is done by using a simple
data structure consisting of O(N) linked lists, then the data
structure may be built in O(V N) steps and searched in O(N)
steps. Hence the runtime of the algorithm to evaluate ℓW will
be O(V N2) steps, and the runtime of the full algorithm to
find the winner will be O(V N3) steps. By doing “several of
A’s hops in one go” (as is often possible) further speedup can
be achieved in large-distance cases.

#voters their vote
4 A > B > C
3 B > C > A

Figure 6.6. Here Improved-Dodgson fails to elect the
Condorcet-Winner, and indeed Majority-Winner, A; here B
wins because 4.243 ≈ 3

√
2 > 4. (But apparently I.D. is inca-

pable of electing a Condorcet-Loser.) N

#voters their vote
3 A > D > B > C
3 A > D > C > B
4 B > C > A > D
5 D > B > C > A

Figure 6.7. 15-voter Improved-Dodgson “add-top”
failure. In this situation, A and B are tied for the win.
(A beats D since 10 > 5

√
3 and beats C since 3

√
3+3

√
2 > 9

but B needs to move distance 6 for A to beat it. B beats A
and C pairwise but D needs to move distance 6 for B to beat
it. The reason D and C cannot win is that D cannot beat A
without motion of distance 8, and C cannot beat B without
motion of distance 9.) If we now add 5 B > D > A > C vot-
ers then D becomes the clear winner (no motion required),
violating “add-top.” N

6.8 TMR: Topmost Median Rank
◮ The candidate W with the topmost median rank wins.

Annoyingly, TMR often yields a tie. An improvement of it
(improved TMR, or ITMR) which yields a tie less often is as
follows. Suppose a candidate is ranked ≤ m− 1 by a fraction
f < 1/2 of the voters and ≥ m + 1 by a fraction g < 1/2
of the voters. Then regard that candidate’s “median rank” as
the real number m + (f − 1/2)/(f − g) instead of the integer
m.

6.9 A.H.Copeland’s system (1951) [15]

◮ The candidate W maximizing
∑

A signMWA, wins. (In
other words, W is the one with the most “pairwise victories”
where a tie counts as half a victory.)

In most voting methods, if the number V of voters is made
very large while the number N of candidates is held fixed,
the probability of a tie approaches zero. However, that is
not the case with Copeland and (unimproved) TMR; in both
there is still a large probability of a tie even with huge V .
For example in table 6.5, both TMR and Copeland declare
the election a 3-way tie. Alex Small therefore proposed the
following improvement: eliminate all the candidates except
for the co-equal Copeland winners. Then re-run Copeland
on those candidates only (using the vote preference orderings
with all eliminated candidates erased from them). This elimi-
nation and re-Copeland process is continued until the winner-
set ceases shrinking. Although Small’s variant reduces the
probability of a tie, that probability still is bounded above
zero even with V random votes when V → ∞. (Small then
admits defeat and breaks any still -remaining ties randomly.)

Alternatively, we could employ any other voting system to
break the Copeland ties. Copeland is essentially the method
used to determine the winner of round-robin chess tourna-
ments.

6.10 Schulze’s beatpath system (1997) [66]

A “beatpath” from candidate A to candidate B is a path of
candidates A-X-Y -· · · -Z-B, and its “strength” is the mini-
mum margin of victory of each candidate in the path over the
one immediately to his right. Thus the strength of this beat-
path would be min{MAX , MXY , . . . , MZB}. Let SAB denote
the maximum strength among all beatpaths from A to B.

◮ Markus Schulze proved that at least one candidate W must
exist such that SWA ≥ SAW for every A (and indeed proved
that the relation SAB > SBA is a transitive relation among
candidates A, B). Such candidates are “potential winners.”

Schulze observed that if there are no pairwise ties and there
are no pairwise defeats of equal strength (both are generi-
cally true if the number of voters is very large and their votes
contain independent randomness), then the Schulze winner is
unique.

In the event of non-uniqueness, Schulze proposed the follow-
ing randomized tie-breaking procedure for choosing a winner
from among the potential winners: Order the potential win-
ners compatibly with the ordering on a random ballot.

Schulze presented a simple O(N3)-step algorithm to compute
all the SAB:
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procedure Schulze-beatpath-strengths21

1: for i = 1, . . . , N , j = 1, . . . , N do
2: Sij ←Mij ;
3: end for
4: for i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . , N do
5: if i 6= j and j 6= k and i 6= k then
6: m← min{Sji, Sik};
7: Sjk ← min{Sjk, m};
8: end if
9: end for

Schulze’s method has been adopted by various large software
development organizations (e.g. Debian Linux, Board of Soft-
ware in the Public Interest) for their votes.

S.Eppley pointed out that, in the absence of a Condorcet-
Winner (due to a Condorcet cycle as in table 1.1) somebody
could always complain that the election winner W would have
lost to somebody else (A) by majority vote in a head-to-head
election. However, suppose any such complaint could be re-
butted by turning the complainer’s own logic against him, i.e.
by noting that A would also have been beaten by somebody
else B, who in turn was beaten by somebody else C,..., who
in turn was beaten by W with all of these defeats being even
stronger than the A > W defeat that inspired the complaint
– then those complainers could be squelched.

In the absence of ties, Schulze’s Beatpath system enjoys pre-
cisely this “immunity to complaints” property. So do River,
Tideman’s Ranked Pairs system, and our new maxtree sys-
tem (§6.13), but somehow Schulze seems the most natural
embodiment of the idea.

Another way to look at Schulze’s method (and these other
two methods) is that they are attempts to make Condorcet’s
least-reversal method (§6.3) less vulnerable to strategic ma-
nipulation.22 They provably accomplish this in the sense that
all three of these methods are “immune to candidate cloning,”
i.e, replacing a candidate with several “clones” will not af-
fect the election results (as opposed to in the plurality sys-
tem, where the clones “split the vote,” and the Borda system,
where they hugely increase each others chances via “team-
ing”). Thus in the DH3 scenario of §6.3-6.3, the number of
mediocre “dark horse” candidates will not affect the situa-
tion (unlike in Condorcet’s original method, where more dark
horses make it worse).23 However, since even a single dark
horse suffices (table 6.4) this improvement is insufficient to
cure the DH3 problem.

#voters their vote
12 D > E > C > A > B > F
10 F > A > B > C > D > E
8 E > C > D > B > F > A
6 F > A > B > D > E > C
4 A > B > C > D > E > F
4 C > D > B > F > E > A
4 F > E > D > B > C > A
4 A > E > B > F > C > D
2 A > E > F > B > C > D
2 B > F > A > C > D > E
2 A > B > F > D > E > C
2 C > D > B > E > F > A

Figure 6.8. Schulze-voting “no-show” and add-top
paradoxes. In this situation by Schulze [66], the U -matrix
and path-strength matrix S are below and the Schulze winner
evidently (in view of the first row and column of S) is A.














− 40 30 30 30 24

20 − 34 30 30 38

30 26 − 36 22 30

30 30 24 − 42 30

30 30 38 18 − 32

36 22 30 30 28 −
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− 20 8 8 8 16

12 − 8 8 8 16

4 4 − 12 12 4

4 4 16 − 24 4

4 4 16 12 − 4

12 12 8 8 8 −














But after adding 3 A > E > F > C > B > D voters, the
unique Schulze winner changes from their top-ranked candi-
date A to their bottom-ranked candidate D! Those voters
evidently would have been better off had they not shown up.
The new V - and S-matrices are













− 43 33 33 33 27

20 − 34 33 30 38

30 29 − 39 22 30

30 30 24 − 42 30

30 33 41 21 − 35

36 25 33 33 28 −














,














− 23 5 5 5 13

9 − 5 5 5 13

7 7 − 15 15 7

7 7 19 − 21 7

7 7 19 15 − 7

9 9 5 5 5 −














respectively, and D is the winner in view of the 4th row and
column of S. N

6.11 N.Tideman’s “ranked pairs” (1989) =
S.Eppley’s “maximum affirmed majori-
ties” [88]

◮ Find24 the candidate pair AB with the largest pairwise
margin of victory MAB and “lock it in” by drawing an arrow
from A to B. We proceed through all victories in decreasing-
magnitude order, “locking them in” if so doing does not create
a directed cycle in the directed graph we are drawing. The

21In for statements describing multiple loops, the variable stated last is for the innermost loop.
22One could attempt to “improve”upon Schulze’s method by computing the maximum flow from A to B in the directed graph with arc-capacities.

This is “better” because it considers all beatpaths from A to B, not just the strongest one. However, such a “maxflow voting system” would be
highly vulnerable to candidate-cloning, unlike Schulze’s system.

23Also more generally, by cloning a candidate who pairwise-beats the Condircet Least Reversal winner, more reversals are required, which can
prevent him from still winning.

24Eppley’s and Tideman’s procedures actually differ, but if all voters provide full tie-free rankings of all candidates – which is the only case we
shall consider here – then they are the same.
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root of the resulting directed-graph (the only candidate with
no arrows pointing to him) then is the winner.

Note: Tideman (in the absence of pairwise ties) always pro-
duces a full ordering of the N candidates. (Proof: If any two
A, B were not ordered at the end, then Tideman would not
be prevented from adding a directed arc A → B or B → A,
since this addition could not cause a directed cycle.)

#voters their vote
12 A > C > E > B > D
10 E > B > D > A > C
9 D > C > B > E > A
7 B > A > D > C > E
5 E > A > C > B > D
4 E > D > C > B > A
3 D > A > B > C > E
3 A > C > B > E > D
3 E > D > C > A > B
2 C > E > B > D > A
1 D > E > B > A > C
1 E > C > B > D > A

Figure 6.9. Tideman-voting drastic “no-show” and
add-top paradoxes. (Example by M.Schulze.) The Tide-
man ranking is A > C > B > E > D and hence A wins. The
V - and M -matrices (where we place minus signs above rather
than before numbers) are

U =











∗ 26 41 27 25

34 ∗ 21 40 22

19 39 ∗ 23 36

33 20 37 ∗ 20

35 38 24 40 ∗











, M =











0 8 22 6 10

8 0 18 20 16

22 18 0 14 12

6 20 14 0 20

10 16 12 20 0











If we add 3 A > D > B > C > E voters then

U =











∗ 29 44 30 28

34 ∗ 24 40 25

19 39 ∗ 23 39

33 23 40 ∗ 23

35 38 24 40 ∗











, M =











0 5 25 3 7

5 0 18 17 13

25 18 0 17 15

3 17 17 0 17

7 13 15 17 0











Now the Tideman ranking is either E > A > D > C > B or
E > D > A > C > B, depending on tie-breaks, and either
way E (the bottom-ranked choice of the extra voters!) wins.
N

6.12 “River” system by Jobst Heitzig (2004)
◮ Find the candidate pair AB with the largest pairwise mar-
gin25 of victory MAB and “lock it in” by drawing an arrow
from A to B. We proceed through all victories in decreasing-
magnitude order, “locking them in” if so doing creates neither
a directed cycle nor a “branching” (that is, two arrows XB
and Y B with the same destination-node B) in the directed

graph we are drawing. The root of the resulting directed-tree
then is the winner.

Note: the no-branching condition forces each node to have
only one “parent” and hence forces the directed acyclic graph
we are drawing to be a tree with all arc-arrows directed away
from the root.

According to Schulze, River obeys the following property
(while both Schulze’s own method, and Tideman’s, fail it as
he demonstrates [66] with two examples): if a new candidate
Z is added, and every voter ranks A > Z for some-already
running candidate A, then there is zero probability of the
election result changing.

#voters their vote
6 B > A > D > C
6 D > C > A > B
6 C > A > B > D
5 D > B > C > A
4 A > D > B > C
4 B > C > A > D
3 A > B > D > C
2 C > B > A > D

Figure 6.10. River-voting “no-show,” “add-top,” and
“later harm” paradoxes. (Example by M.Schulze.) River’s
winner is A and the tree-diagram is B ← A→ D → C.

U =









∗ 19 13 25

17 ∗ 22 21

23 14 ∗ 12

11 15 24 ∗









, M =









0 2 4 14

2 0 8 6

4 8 0 12

14 6 12 0









If we add 3 A > B > C > D voters then the matrices are

U =









∗ 22 16 28

17 ∗ 25 24

23 14 ∗ 15

11 15 24 ∗









, M =









0 5 7 17

5 0 11 9

7 11 0 9

17 9 9 0









Then the tree-diagram is B → C → A→ D and B is the win-
ner. (This also illustrates a failure of“later-no-harm”since the
3 votes could have been A > D > C > B in which case A
still would have won. Thus the“later”decisions about B, C, D
“harmed” A.)26 N

There is an algorithm to compute the River winner in O(V N+
N2) steps, i.e. in O(N2) steps from the M -matrix:

Each node B knows its best potential parent (N2 steps to get
that knowledge initially) i.e. the node A maximizing MAB.
Each tree knows its member-nodes (and its root-node) so we
may avoid considering descendants as“potential parents.” We
now proceed as follows. Each stage we examine the current
root nodes to find the one with the best potential parent (max-
imizing MAB over all current-root-nodes B and suitable par-
ents A). We then adjoin the arc A → B and combine A
and B’s two trees into one tree, with root the same as A’s

25Actually, Heitzig prefers to use UAB rather than MAB, but the two are equivalent if we require voters to provide full preference orderings as
votes (and we do).

26Tideman’s ranked pairs method also violates add-top in 4-candidate cases, although not in this one; and River can also be made to violate
participation in as maximally-drastic a manner as Tideman in figure 6.9.
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old tree’s root. These stages continue until only a single tree
remains, and its root is the winner. (Initially we have N one-
node trees.) Each stage requires O(N) time, so the total time
is O(N2).

Heitzig pointed out that River obeys “monotonicity,” i.e. in-
creasing the rank of A in some set of ballots (without chang-
ing anything else) cannot harm A. The algorithm makes that
clear: Since A’s pairwise victory margins over others can-
not decrease, A’s chances of being the best potential parent
of anybody cannot decrease; meanwhile A’s pairwise defeats
cannot worsen, hence every other candidate, if it is a best po-
tential parent of anybody, is less likely to be the best potential
parent of A rather than somebody else first. Consequently A’s
chances of being the root of the tree cannot decrease. Q.E.D.

6.13 Max-tree system
Heitzig’s River system might perhaps better be renamed the
“greedy tree system.” Compare it with J.B.Kruskal’s famous
algorithm for finding the“minimum spanning tree”in an undi-
rected graph with real edge-lengths, i.e.

1. sort the edges in increasing-cost order,
2. go through the list picking each edge that would not cre-

ate a cycle in the graph formed by the already-picked
edges.

In other words, the greedy tree, in an undirected graph with
edge-lengths, is in fact the optimum tree. (Of course, by sort-
ing in decreasing order, or by using negated edge lengths,
Kruskal similarly would obtain the max imum sum-of-edge-
lengths spanning tree.) But that greedy=optimal property
is not true in the case of directed graphs, as is shown by the
digraph with nodes ABCD and the following arc-cost matrix:









∗ 3 2 1

∗ ∗ 4 ∗
∗ ∗ ∗ 7

∗ 10 ∗ ∗









. (23)

The min-cost directed tree is A → B → C → D with cost
3+4+7 = 14, while the greedy-min tree is A→ D → B → C
with cost 1 + 10 + 5 = 16.

This all suggests that the following might be a better voting
system than Heitzig’s River greedy-tree system:

◮ In the complete N -node directed graph with arc A → B
having value MAB, find the directed spanning tree with all
arcs directed away from the root, with maximum sum of arc-
values. Its root is the election winner.

(Other variants are possible, i.e. the goal of maximizing the
sum may be replaced with the goal of maximimizing the sum
of pth powers for some p, or of maximizing the minimum arc-
value in27 the tree [32], and we could restrict to trees with
root-outvalence 1, in which case we would get not only a win-
ner, but also a “second-place finisher.”)

A polynomial-time algorithm for finding the max-directed-
tree is known. It was originally invented by Jack Edmonds
[25] and independently by Chu and Liu [12], and is explained

in [40] and [44]. It was sped up to run in O(E + N lg N)
steps for a digraph with E arcs and N nodes (in either the
case where the root is pre-specified, or not) [28]. In our case
E = N2 so the total runtime for maxtree voting is O(N2)
steps once the M matrix is known (and this bound is also
valid for both of the variant algorithms we mentioned). This
is the same time bound as for the greedy tree system, although
we admit the algorithm is substantially more complicated to
describe.

procedure Chu-Liu-Edmonds original O(N3)-time algo-
rithm to find min-summed-cost outward-directed tree
with specified root-node r in a directed graph with arc-
costs.

1: Discard arcs with destination r (if any).
2: For each non-root node η, select the min-cost arc with

destination η.
3: If this set of N − 1 arcs is cycle-free (tree) we are done.
4: Otherwise, contract each directed-cycle into a supernode

k, modifying the arc-costs via

C
(new)
ab = Cab − Cpred(b),b + min

j
Cpred(j),j

where a is a node not on the cycle, b is a node on it, and
pred(j)→ j are the directed arcs on the cycle.

5: For each supernode, select the entering arc which has the
least modified cost; replace the arc which enters the same
real node with the new selected arc.

6: Go back to step 2 with the contracted graph and the mod-
ified arc costs.

The key idea behind the algorithm is to find the replacing
arc(s) with the minimum extra cost to eliminate any cycle(s);
the given cost-modification equation incorporates the associ-
ated extra cost. (If it is desired to leave the root-node un-
specified, that may be accomplished by adjoining one artifi-
cial extra root with huge-cost edges from it to every genuine
node.)

In the election of figure 6.10, the River and Max-tree systems
produce identical trees, showing that max-tree also violates
add-top and later-no-harm.

We shall now sketch proofs that maxtree voting obeys (1)
monotonicity, (2) is unaffected by candidate “cloning,” and
(3) obeys Eppley’s “immunity to complaints” property men-
tioned in §6.10.

(1) If some node A’s pairwise victory-margins increase and
defeat margins decrease, then in the Edmonds algorithm step
2, that can only increase A’s chances of finding a child and
decrease A’s chances of being a child, i.e. A has a larger
(or same) chance of being root. If we do some supernode-
contractions and cost-modifications, then observe from the
modified-cost formula that arcs entering A become (if any-
thing) disfavored in comparison to those entering any other
member of the same cycle forming that supernode. Again this
can only decrease A’s chances of being a child, i.e. a non-root.
Q.E.D.

(2) There are two ways candidate-clones might affect the win-
ner and the maxtree structure and we have to rule them both
out. First of all, the maxtree could the the same as it was

27Markus Schulze points out: When you maximize the minimum arc-value, then you get the Schulze voting method (§6.10): The strongest paths
from the Schulze winner to every other candidate form that tree where the minimum arc-value is maximized.
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before the clones, but with extra duplicated arcs for those
clones, i.e. an arc BC is now duplicated to have an addi-
tional arc BC′ where C′ is a clone of C, etc. This is fine since
the winner is not affected. Second, interclone-arcs could be
involved in the tree. If interclone arc never are involved in a
directed cycle this is again fine since the tree structure is again
unaffected. Now suppose interclone arcs form a directed cy-
cle. We contract it into a supernode-of-clones, and then the
modified costs leading to that supernode just get constants
added to them, where these constants do not depend on that
arc’s start-node, only on its destination-node. This kind of
modification cannot affect tree-shape (as can be seen from
step 2 of the Edmonds algorithm). Q.E.D.

(3) Any arc entering the root R from a “better” winner B
will form a directed cycle when combined with the tree-path
of directed arcs R → · · · → B. If we adjoint the new arc,
and delete the least-margin victory in this cycle, then we get
a higher-sum tree, contradicting it being a maxtree, unless
B is “immune to complaints” because the B → R arc is the
least-margin victory in that cycle. Q.E.D.

Because of these properties, it seems to us that (unless the
greater complexity of the algorithm is regarded as an insu-
perable obstacle) maxtree voting should be adopted instead
of River voting; we get the same properties but a better tree
and hence presumably, in some statistical sense, a better elec-
tion winner.

6.14 Keener’s eigenvector system (1993)
[41][24]

◮ The U -matrix has an eigenvector ~x with a positive real
eigenvalue which is, in fact, the largest-modulus eigenvalue.
(By a well known theorem of Perron & Frobenius. This eigen-
vector is most conveniently found via the “power method.”)
It consists entirely of nonnegative real numbers. The winner
corresponds to the largest entry of this eigenvector. (Note: ~x
also provides a natural ordering of the candidates.)

This may also be thought of in the following way. Consider
the following Markov Chain on the N candidates. You are
sitting on candidate A. You select a random voter v and a
random candidate B. If v prefers B to A then you jump to
candidate B, otherwise you stay with A. Keep doing this pro-
cess forever. You tend to sit on better candidates for a larger
fraction of the time than poor ones. The fraction of the time
you will be at candidate n is xn.

???ACTUALLY NOT. TO REALLY MAKE THAT
MARKOV-DESCRIPTION TRUE YOU NEED TO ADD
TO THE DIAGONAL ENTRIES OF THE MATRIX,
ENOUGH TO MAKE ALL THE COLUMN SUMS BE
EQUAL TO THE #VOTERS. SEE MY OTHER PAPER
ON“SINKHORN”FOR THE CORRECT DOPE. THIS AND
THE NEXT SECTION HAVE TO BE FIXED/UPDATED
BASED ON THAT OTHER PAPER.

Example: In the situation of table 6.5, the U -matrix is the
left-hand matrix below:






0 11 5

8 0 13

14 6 0











0 11 11

8 0 13

8 6 0




 (24)

and alteration of the 6 C > A > B votes to A > C > B
changes it to the right-hand matrix (in which A is a Con-
dorcet winner). The eigenvectors are respectively

(0.301, 0.361
︸ ︷︷ ︸

B wins

, 0.338) and (0.372
︸ ︷︷ ︸

A wins

, 0.353, 0.275) (25)

with respective eigenvalues 18.841 and 18.551. N

Example: When a Condorcet-winner exists, Keener does
not necessarily elect it. In the 4-candidate election among
{A, B, C, D} with the following U -matrix,

U =









0 11 11 11

9 0 20 20

9 0 0 20

9 0 0 0









(26)

the Condorcet-Winner is A but B is the Keener winner be-
cause the Frobenius eigenvector is (0.309, 0.372, 0.205, 0.113)
and B’s entry 0.372 is maximum. N

However, Keener is incapable of electing a Condorcet-loser.

Example: On the left is a U -matrix (e.g. B beats A pairwise
19 votes to 1 vote):









0 19 19 17

1 0 17 2

1 3 0 2

3 18 18 0

















0 20 20 18

1 0 18 3

1 3 0 3

3 18 18 0









(27)

On the right is the U -matrix after adding an extra vote
A > B > C > D. The Frobenius eigenvector of the left
matrix is (0.494, 0.134, 0.081, 0.292) and of the right matrix
is (0.485, 0.145, 0.088, 0.282). In both cases A is the winner,
but A’s eigenvector entry has diminished in the second case,
which is somewhat “paradoxical.” Because A still wins, this is
not a failure of “add-top” for Keener eigenvector voting, but
it is a failure in a weaker sense. N

Does Keener eigenvector voting obey“monotonicity”? A com-
puter search of millions of random U -matrices failed to find
any example of a monotonicity failure (even in this extremely
weak form: switching an adjacent preference A > B to B > A
in a vote causes A’s eigenvector entry to increase or B’s to
decrease). It also failed to find any example of a (genuine)
add-top failure (or a “no-show paradox”) in Keener. That
suggests that such failures are either impossible, or else so
rare that they are not worth worrying about in practice.

The following theorem goes in the direction of, but seems in-
adequate to prove, the desired result.

Theorem 1 (Markov chain monotonicity). Let p(X, Y )
and q(X, Y ) be irreducible Markov chain transition matrices
on the same finite state space. Suppose there exist three dis-
tinct states A, B, C such that

p(A, B) < q(A, B), p(A, C) > q(A, C) (28)

and that p(X, Y ) = q(X, Y ) for all other entries (X, Y ).
Let πp(·) and πq(·) be the stationary distributions. Then
πq(B) > πp(B).
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Proof (by David Aldous): The key realization is that
the expected time between returns to B is 1/π(B), because
if it were anything else, then by the law of large numbers,
after a very long time the number of returns would, with
probability→ 1, tend to a different number than it should,
forcing an incorrect occupancy probability π(B).

So it suffices to prove that the expected return time to B is
smaller in the q-chain. This is fairly obvious. There are two
kinds of return paths to B, those that go through A and those
that do not. The latter kind are not affected.

The former kind return faster to B after the alteration since
it takes 1 step from A to reach B directly, but ≥ 2 steps to
reach B through C, and the probability of going directly to
B increases, whereas the probability of going to C decreases
(and all else stays the same) so the net effect on expected
return time to B starting at A is

(1 − c) dp for some c ≥ 2 (29)

which is negative. Q.E.D.

Unfortunately the power of this kind of reasoning is very lim-
ited. For example, the following question appears still to
be open: suppose we increase p(A, B) and decrease p(B, A)
(again using some 3rd and/or 4th states to compensate).
Then: does π(B)− π(A) increase?

Keener is not “immune to clones” as the following example
demonstrates. The U -matrix on the left






0 2 1

1 0 2

2 1 0
















0 2 1 1 1

1 0 2 2 2

2 1 0 2 1

2 1 1 0 2

2 1 2 1 0











(30)

represents a Condorcet cycle situation with the three candi-
dates A, B, C tied. It changes to the matrix on the right upon
splitting C into three cloned candidates C1, C2, C3 themselves
forming a tied Condorcet cycle. The eigenvectors are

(1, 1, 1)/3 and (0.177, 0.229, 0.198, 0.198, 0.198) (31)

respectively so that the cloning of C breaks the tie28 and
causes B to become the winner. However, somehow this does
not seem very serious because in 1-on-1 contests, cloning the
candidates does not seem to affect Keener.

This eigenvector scheme was originally invented by J.P.Keener
[41] who indeed observed more generally that it could be used
to “rank football teams.” Indeed, Keener has the advantage
that not only does it output a ranking of the candidates, it
produces real numbers quantifying their strengths. Dwork et
al [24] then independently re-invented the same idea, with-
out noting Keener’s work. Both Keener and Dwork et al also
considered several other natural Markov chains and/or matri-
ces and explained how they too could be used for voting and
ranking.

6.15 Sinkhorn voting (2005)
A criticism of Keener eigenvector voting is: why is it based on
the Perron-Frobenius eigenvector of some matrix A, instead

of AT ???

Sinkhorn voting is a new kind of voting I invented which
avoids that criticism. It relies on the theorem [22] that, for any
N ×N matrix A with positive entries there exist a unique29

pair (R, C) of diagonal N × N matrices such that RAC is
doubly stochastic. A N ×N matrix X is “doubly stochastic”
if Xij ≥ 0 and

∑N
i=1 Xij =

∑N
j=1 Xij = 1. In the case where

all the entries are positive, Sinkhorn proved that this (R, C)
pair of row and column scalings may be got by the “Sinkhorn
iteration” (which he proved converges), which consists of re-
peatedly and alternately scaling the rows and columns of A
to make those row and column sums equal 1.

◮ Sinkhornize U + J (where J is the “all 1” matrix Jab = 1)
and rank the candidates in the same order as the ordering of
the entries (all of which automatically are positive and real)
of the resulting diagonal matrix CR−1.

Like Keener voting, Sinkhorn voting also has an interpreta-
tion in terms of a Markov chain. The ij entry of the matrix
RAC (since it is doubly stochastic) is precisely the transition
probability j → i for a Markov chain whose unique station-
ary distribution is uniform. The iith entries of R and C may
be thought of as win and loss “amplification factors” required
to cause candidate i to have the same stationary probability
as all the other candidates, in a Markov chain of the same
structure as U .

6.16 Simpson-Kramer min-max system [42]

◮ The candidate W with the minimum maxA 6=W MAW wins.
(Mentioned in [46]. Also mentioned on p.104 of [1] as
“G.Köhler’s dual method” for the single-winner special case.)

In other words: each candidate’s score is his greatest margin
of defeat in a pairwise contest. (Nonpositive if undefeated.)
The candidate with the lowest score wins.

6.17 IRV (Instant Runoff Voting) [77][39]

This is thee single-winner special case of the Hare/Droop STV
(Single transferable vote) system. Thomas Hare (1806-1891)
was an English solicitor who was involved in the theory and
advocacy of election methods.

◮ The candidate with the fewest top-rankings is eliminated.
We then erase that candidate from all preference orderings
and continue on. Once N − 1 candidates have been elimi-
nated, the remaining one wins.

#voters their vote
7 A > B > C > D
6 B > A > C > D
5 C > B > A > D
3 D > C > B > A

Figure 6.11. 21-voter IRV monotonicity-failure exam-
ple [7]. First round counts of top-rank votes: A = 7, B = 6,
C = 5, D = 3, so eliminate D. Second round counts: A = 7,
B = 6, C = 8, so eliminate B. Final round: A wins over

28And of course, by slightly perturbing this example we can cause the original scenario to have no ties and to have anybody we want as winner.
29Up to an arbitrary scaling R → kR, C → C/k.
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C, 13-to-8. (This is despite the fact that B is a Condorcet-
Winner.)

But if the last 3 voters lift A from bottom to top (changing
vote D > C > B > A to A > D > C > B) then the election
instead proceeds thus: First round counts: A = 10, B = 6,
C = 5, D = 0, so eliminate D. Second round: eliminate
C. Final round: B wins over A, 11-to-10. (B is still the
Condorcet-winner.)

Also if the last 3 voters had ranked D first but refused to say
more (i.e. refused to provide their 2nd, 3rd, and 4th choices),
then B would have won (which those voters prefer over A).
That illustrates the fact that in IRV, voters can be motivated
to refuse to rank-order some of the candidates, thus defeat-
ing IRV’s purpose of garnering ordering information from the
voters. N

Table 6.11 is a severe example of “non-monotonicity” in IRV
showing that ranking somebody top instead of bottom can
cause them to lose!

Further examples may be contrived to cause IRV to exhibit
all sorts of bizarre behavior, Table 6.12 gives a fairly plausi-
ble example constructed by Bart Ingles demonstrating both
a “no-show paradox” and a monotonicity violation in an IRV
election.

#voters their vote
900 A > C > B
300 C > A > B
300 C > B > A
575 B > C > A

Figure 6.12. Plausible nonmonotonic-IRV example by
Bart Ingles: the “centrist” candidate C is supported by voters
whose second choice is evenly split among the two “extreme”
candidates A and B. B is eliminated and then C wins by 1175
votes to A’s 900. But if an additional 50 “absentee” votes
B > C > A appear, then C (although still the Condorcet-
Winner by a huge margin) is eliminated and A wins by 1200
votes to B’s 925. These additional voters would have been
better off not voting (a “no show paradox”) since their votes
caused their most-hated candidate to be elected. If these ad-
ditional 50 votes were changed to A > B > C then B is
eliminated and C wins 1175 votes to A’s 950. This is a mono-
tonicity violation: Altering the 50 votes to rank A top and C
bottom caused A to lose and C to win! (This example also
applies to P+I voting, since P+I and IRV are the same thing
in elections with ≤ 3 candidates.) N

Despite such examples, in practice IRV tends to have one
significant advantage: human voters empirically usually find
IRV difficult to manipulate drastically, either by strategically
lying in their votes or by manipulating the nomination pro-
cess [10][11]. This is not just a human perception: it is also
supported by objective evidence.

system % manipulable
IRV 23-51

Plurality 49-100
Borda 83-100

Coombs 51-100

Figure 6.13. Manipulability. The percentages of “manip-
ulable” elections with either 21 or 1000 voters, with either
“impartial” voters (all vote-types random, independent, and
equally likely) or with votes based on a randomized “spatial
model.” Summarizes data from a large Monte-Carlo study [10]
under 4 kinds of voting, with “manipulability” determined by
linear programming. IRV also tends to require larger coali-
tions of colluding manipulative voters than the other 3 sys-
tems. (Chamberlin [10] did not study Approval (§7.7) and
Range voting but if he had, he probably would be found them
even more manipulation-resistant than IRV.) N

Another interesting property obeyed by IRV (pointed out by
James Green-Armytage) is

Dominant mutual third: If a more than a
third of the voters rank (in any order) the mem-
bers of a subset S of candidates above all others,
and all the members of S pairwise beat all the
non-members; then the winner must come from
S.

That is because the IRV election will, after eliminations and
vote-transfers, reduce to a 2-man contest between an S-
member and somebody else. (This is a weakened form of
the Condorcet or Smith Set property.)

#voters their vote

339 (A, B, C, . . . , Y )z(a, b, c, . . . , y)

171 (a, b, c, . . . , y)(A, B, C, . . . , Y )z

490 z (A, B, C, . . . , Y, a, b, c . . . , y)

Figure 6.14. 1000-voter example IRV election illustrating
“dominant mutual third.” The overlines denote random per-
mutations (with different randomness for each voter among
the 339, etc); the votes are candidate lists in descending or-
der of preference. In this situation if the “random” orderings
actually yield all their orderings exactly equally frequently so
we get exact ties, and if we are using “nondiscriminatory”IRV
rules where when we eliminate a candidate, we simultaneously
eliminate all the ones he’s tied with (as opposed to any ar-
bitrary tie break) simultaneously, then the election proceeds
thus:

1. eliminate a, b, c, . . . , y
2. eliminate A, B, C, . . . , Y
3. z wins, contradicting the dominant mutual third prop-

erty.

But if the randomness merely causes inexact ties (or if all ties
are randomly broken), then a, . . . , y and A, . . . , Y candidates
keep getting eliminated until it is down to just three remain-
ing: one from a, . . . , y, one from A, . . . , Y , versus z, and then
the a, . . . , y candidate loses, and then in the final round with
the A, . . . , Y candidate pitted against z, he wins and z loses.
This confirms the claim of dominant mutual third, while il-
lustrating the need for an asterisk about ties. N

IRV is “immune to clones” (9 of §9), exhibits “later-no-harm”
(9 of §9), and is one of the few preference-ranking voting sys-
tems unhurt by the devastating DH3 pathology of §6.3. Fur-
ther theoretical support for this perception of manipulation-
resistance was provided by Bartholdi and Orlin’s proof [4] that
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it is NP-hard [29] to determine how to change your vote in
IRV in order to change the winner.

While this was a cute idea, do not be deluded into thinking
such NP-hardness results necessarily have anything to do with
building a good voting system. This is because none of these
NP-hardness results hold in the limit V → ∞ (large num-
ber of voters) with the number N of candidates held fixed
(nor even with N = O(log V )). Indeed, in this limit (which
is apparently the one relevant for elections in which humans
participate!) these computational tasks are easy, i.e. linear
or even very sublinear time (or, more generally, in P). Also,
even without a bound on N , it is usually still easy to think of
a dishonest vote which seems to be more strategic than the
true honest vote, despite difficulty in finding the optimal way
to be dishonest. Thus, dishonesty is not necessarily prevented
or discouraged by NP-hardness. Furthermore, the major po-
litical parties will have access to computers and hence will be
capable of determining (by exhaustive search), and advertis-
ing, optimal voter strategies.

So what would be more important than NP-hardness (a con-
cept that concerns worst-case input) would be some kind of
average-case hardness result, and a result not about optimal
strategy but rather about strategies significantly improving
on honesty. But no such result is known.

My personal feeling is that it usually is easy to think of a
probably-productive way to be dishonest in IRV, but it is
usually hard to devise scenarios in which pervasive strategic
dishonesty of this type causes drastic pathologies.

One final remark about IRV: It is“immune to vote splitting”in
the following (fairly weak) sense. Suppose the electorate (and
the candidates) consists of various disjoint“camps,”where ev-
ery voter in camp j ranks all type-j candidates ahead of all
non-j candidates. Then, regardless of how the camps “split
their votes” among their-type candidates, if there exists a
camp containing > 50% of the voters, then some candidate
from that camp is guaranteed to win the election.30 This is
not a terribly strong property and it is not unique to IRV. For
example, it is obeyed by every voting system preprocessed
using the “Smith set” (§6.28), and (since their winner is a
Smith-set member) by Schulze beatpath, Heitzig River, Tide-
man ranked pairs, Copeland, Nanson, and Raynaud.31

(Most weighted positional systems, e.g. Borda, disobey it, so
in that sense IRV is superior to them.)

“Approval voting” (§7.7) also obeys this property provided
camp members approve of candidates from their camp and
disapprove of all others, and indeed AV then obeys the
stronger property that a candidate from the most-numerous
camp then must win.

6.18 Loring’s and Cretney’s Condorcet-IRV
systems

Robert Loring liked the empirical resistance of IRV to strate-
gic manipulation, but did not like the fact that IRV can fail to
elect Condorcet-Winners, as illustrated in table 6.12. Indeed
much more dramatic examples are possible, see table 6.15.

#voters their vote simplified
50 A > B > C > D > E A > B
51 B > A > C > D > E B
100 C > D > B > E > A C > D
53 D > E > C > B > A D
49 E > D > C > B > A E > D

Figure 6.15. IRV election example by Mike Ossipoff.
The centrist candidate C is the favorite of far more voters than
anybody else, and not only is the Condorcet-Winner, but in
fact would win a head-to-head election versus any other can-
didate by approximately a 2:1 margin.32 Hence almost every
ranked-ballot voting system would elect C. But IRV elects D!
(IRV only examines the preference relations in the“simplified”
votes, and ignores the others.) This scenario is quite likely to
arise in practice thanks to the prevalence of 1-dimensional
“spatial voting.” N

Therefore, Loring suggested this – hopefully superior –
method:

◮ If there is a Condorcet-Winner, he wins. Otherwise, use
IRV.

Meanwhile Blake Cretney suggested this one:

◮ Continue IRV-type eliminations until a Condorcet-winner
exists among the remaining candidates, then it wins.

Yet another idea of this ilk would be, each round, to elimi-
nate every candidate not in the“Smith set”(§6.28), and if that
did nothing, then eliminate whoever has the fewest top-rank
votes.

Loring is immune to the DH3 pathology of §6.3 except in
the rarer and less damaging case when there is a Condorcet-
Winner among the “mediocrities” (but: this unfortunately is
forced if there is only a single mediocrity, as in table 6.4, or
only two of them). Cretney, however, is not immune.

Loring and Cretney’s systems still are subject to essentially
all the bizarre pathologies that IRV suffers from (because we
may simply add one extra candidate, who has no chance of
winning and whose sole purpose is to prevent a Condorcet-
Winner from existing, to any nasty IRV example) and still
enjoys much of IRV’s empirical manipulation-resistance.

6.19 BTR-IRV: Bottom Two Runoff IRV
The proponents of this scheme33 suggest pronouncing BTR as
“better.” BTR-IRV is the same as standard IRV, except that

30Proof sketch: at some point a top-camp candidate will have > 50% of the top-rank votes (after transfers) and hence can never be eliminated.]
But if no camp contains > 50% of the voters, then it is not the case that a candidate from the most numerous camp must win. E.g, camp A could
have 35% and camps B and C 32% and 33% of the voters, but a type-C candidate could win if many of the B-voters transfer their allegiance to
him after all B-candidates and appropriate other candidates are eliminated – and whether this happens does depend on how the B-voters [and A-
and C-voters] split their votes among the various A and C candidates.

31It also is obeyed by Woodall-DAC (even though Woodall-DAC does not obey the Smith-set property and can fail to elect a Condorcet winner).
Proof: That is because that camp A’s candidates are a > 50%-acquiesced set, whereas any set S containing some non-A candidate and avoiding
some A-camp candidate, is < 50%-acquiesced. Therefore as Woodall goes down the sets it will refuse to use S. Q.E.D.

32And the reader may enjoy this easy exercise: construct a scenario in which the Condorcet Winner beats each other candidate pairwise by a
99:1 margin, but nevertheless is eliminated in the very first round of IRV voting.

33BTR-IRV was invented by Rob LeGrand and also the BTR idea was suggested to me for use in multiwinner voting systems by Jan Kok.
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when a candidate is eliminated, he is chosen by an “instant
runoff” between the two candidates top-ranked by the fewest
voters. This runoff examines all of the ballots to determine
which of the bottom two candidates is least preferred by the
voters.

BTR-IRV is actually a Condorcet method, because it will
choose the Condorcet Winner, if there is one, as the win-
ner of the election. BTR-IRV thus provides the advantages
of Condorcet in IRV “packaging.” Unfortunately BTR-IRV
suffers from the DH3 pathology of table 6.4, suffers “add-top
failure” as in table 6.16, and suffers “later harm” (table 9.2),
whereas plain IRV has none of those deficiencies.34

#voters their vote
3 A > D > B > C
3 A > D > C > B
4 B > C > A > D
5 D > B > C > A
4 C > A > B > D
6 A > C > B > D

Figure 6.16. BTR-IRV add-top failure. With the 19
voters above the line, A wins (C, B, and D are eliminated in
that order). Adding the 6 voters below the line, all of whom
top-rank A, causes C to become the winner (and Condorcet-
winner). N

6.20 Coombs STV system (1954) [14]

Clyde H. Coombs (1912-1988) was an American psychologist.

◮ The candidate with the most bottom-rankings is elimi-
nated. We then erase that candidate from all preference or-
derings and continue on. Once N − 1 candidates have been
eliminated, the remaining one wins.

This is a very bad system in the presence of strategic voters,
because they will rank their least-liked among the favorites
artificially “last.” This will cause all the favorites to be elimi-
nated in early rounds, causing the winners to consist entirely
of unknown “dark horse” candidates.

#voters their vote
4 A > B > C
4 B > C > A
5 C > A > B
2 C > B > A

Figure 6.17. 15-voter Coombs “no-show paradox” ex-
ample. B wins 8 to 7 after A is eliminated. If the two
C > B > A voters had not shown up, then B would have
been eliminated whereupon their first choice, C, would have
won by 9 to 4. N

(i)

#voters their vote
2 B > A > C > D
3 D > B > A > C
4 C > A > D > B

(ii)

the new vote elim order winner
D > B > C > A B, D, A C
D > A > B > C B, D, C A
D > A > C > B B, D, C A
D > C > A > B B, D, A C
D > C > B > A B, D, A C

Figure 6.18. 9-voter Coombs “favorite betrayal” ex-
ample.

(i) Coombs eliminates B, then D, then A so C wins. If the 3
D > B > A > C voters change their vote to B > A > C > D
(“maximally betraying”D) then D, C, A are successively elim-
inated, so B wins, an outcome those voters prefer.

(ii) If those 3 voters had instead changed their votes to any-
thing else with D still top-ranked, then a worse candidate
(from their point of view) would have been elected, hence
this betrayal of D was strategically essential. N

6.21 Nanson-Baldwin elimination (1882)
[55]

Edward John Nanson (1850-1936) was a high honors graduate
in math from Trinity College Cambridge, and later became a
professor of mathematics at the University of Melbourne in
1875.

◮ The candidate with the least Borda count is eliminated.35

We then erase that candidate from all preference orderings
(then recalculate the Borda scores, which may be done from
the M -matrix with one row and column removed, as in §6.3)
and continue on. Once N−1 candidates have been eliminated,
the remaining one wins.

Nanson’s point was that this always elects a Condorcet-
Winner if one exists (and similarly can never elect a
Condorcet-loser), because of the lemma that a Condorcet-
Winner must have above-average Borda score.

Nanson unfortunately does not share IRV’s resistance to
strategic manipulation: it exhibits a DH3 pathology like
Borda (§6.3) in the presence of strategic voters – a race be-
tween 3 favorites and 10 mediocrities can easily feature early
elimination of all three favorites and consequent guaranteed
election of a “dark horse.”

#voters their vote
8 A > B > C
5 C > A > B
5 B > C > A
2 C > B > A
2 A > C > B

34For definitions of such properties as “later harm” see §9. Since these disadvantages may outweigh its advantages, it is not clear BTR-IRV is
better than ordinary IRV, despite the pronunciation tip! Still, BTR-IRV seems superior to Loring and Cretney.

35In Nanson’s original variant, which has the same properties but is inequivalent, we save time by simultaneously eliminating all candidates
with below-average Borda counts. The Baldwin one-at-a-time elimination variant was adopted in 1926 by the University of Melbourne for its
internal elections. Rob LeGrand suggests that Nanson’s original method is superior to Baldwin’s (at least with honest voters) because more of its
elimination decisions are made on the basis of more information. At any stage in either method, if a candidate is recognized to be a Condorcet
winner, then we may immediately elect him and terminate the procedure, which also saves time. We also remark that instead of eliminating the
candidate with least Borda score, equivalently Nanson may be viewed as eliminating the candidate with “lowest center of mass” position inside the
ranked ballots.
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Figure 6.19. 20+2-voter Nanson example. (Due to
P.C.Fishburn and/or J.T.Richelson.)

Among the first 20 voters the Borda scores are A = 21,
B = 20, C = 19 so C is eliminated whereupon A wins.

If the 2 C > B > A voters change to C > A > B then A = 19,
B = 18, C = 19 so B is eliminated whereupon C wins by 12
to 8 over A. This is a “monotonicity” violation: a change in
favor of A caused A to lose.

Without that change, consider what happens if the 2 addi-
tional A > C > B voters show up. Then A = 25, B = 20,
C = 21 so B is eliminated whereupon C wins. This is an“add-
top” violation: addition of A-top voters caused A to lose. N

On the other hand, Nanson has the significant algorithmic and
communication advantage over most elimination systems (e.g.
IRV, BTR-IRV, and Coombs) that it may be implemented
efficiently in parallel by computation of subtotals of the M
matrix in subdistricts, with only transmission of those subto-
tals to the central tabulating agency, being required. This is
because the Nanson-winner may be computed solely from the
M matrix. (The same “M -only” trick works for Rouse, Ray-
naud, Arrow-Raynaud, Schulze, Tideman, etc.) Incidentally,
by updating Borda scores after eliminations rather than re-
computing them, this may be done in O(N) time per update,
i.e. O(N2) steps in total.

6.22 Rouse’s elimination method

◮ Rouse is like Nanson-Baldwin but with an extra level of re-
cursion: it successively pseudo-eliminates the candidate with
the highest Borda score until one is left, then it genuinely-
eliminates that one from the original list; this step is repeated
until a single candidate is left. (There are again two – Nanson
and Baldwin – variants.)

This was proposed by web-site designer Michael Rouse in
2001. (But this still does not cure Nanson’s DH3 pathology,
and I find it very annoying to use Rouse manually, because of
the large amount of work for the tallier.)

#voters their vote
5 C > A > B
4 A > B > C
2 B > C > A
2 A > C > B

Figure 6.20. 11+2-voter Rouse “add-top” failure ex-
ample. Among the first 11 voters the Borda scores are
A = 13, B = 8, C = 12 so we pseudo-eliminate A, where-
upon C is genuinely eliminated. Then A wins over B.

Now consider what happens if the 2 additional A > C > B
voters show up. Then the Borda scores are A = 17, B = 8,
C = 14 so we pseudo-eliminate A, whereupon B is genuinely
eliminated. Then C wins over A. This is an “add-top” viola-
tion: addition of A-top voters caused A to lose.

(This also illustrates “later harm”: if the 2 A > C > B voters
had changed their votes to A > B > C then C would be gen-
uinely eliminated and A would win. Thus these voters’“later”
preference of C > B “harmed” A.) N

6.23 H.Raynaud’s elimination method
◮ The candidate who suffered the largest-margin pairwise de-
feat (B such that MAB is the maximum entry of the M ma-
trix) is eliminated. We then erase that candidate from all
preference orderings (this may be accomplished by erasing
the Bth row and column of the M matrix) and continue on.
Once N − 1 candidates have been eliminated, the remaining
one wins.

#voters their vote
7 A > B > C
7 B > C > A
6 C > A > B

Figure 6.21. Example of “add-top failure” in Raynaud
(by Chris Benham) The defeats and their margins are
A > B 13-7 (6), B > C 14-6 (8), C > A 13-7 (6). Hence
C is eliminated whereupon A wins. However, if we add three
A > C > B ballots the winner changes to C (because the
directions of the defeats are unchanged, but now B has the
worst defeat and hence is first-eliminated). N

6.24 Arrow-Raynaud pairwise elimination
◮ Eliminate the “least-convincing victor” candidate A associ-
ated with minA maxB MAB. Continue eliminating until only
one candidate remains: the winner. (Mentioned in [1] p.105;
this is the single-winner special case.)

In other words: each candidate’s score is the largest margin
by which he wins a pairwise contest. (Nonpositive if never
won.) We repeatedly eliminate the candidate with the small-
est score.

One glaring defect of Arrow-Raynaud is that it can elimi-
nate a Condorcet-Winner – even one who is a Super-Majority-
Winner, i.e. whom 99% of voters rank top – in the very first
round!

#voters their vote
N − 1 W > A1 > A2 > · · · > AN−2 > AN−1

N − 1 W > A2 > A3 > · · · > AN−1 > A1

N − 1 W > A3 > A4 > · · · > A1 > A2

. . .
N − 1 W > AN−1 > A1 > · · · > AN−3 > AN−2

1 + ǫ A1 > A2 > · · · > AN−2 > AN−1 > W
1 + ǫ A2 > A3 > · · · > AN−1 > A1 > W
1 + ǫ A3 > A4 > · · · > A1 > A2 > W
. . .
1 + ǫ AN−1 > A1 > · · · > AN−3 > AN−2 > W

Figure 6.22. W is ranked top by a fraction (N − 1)/(N +
[N − 1]ǫ) of the voters where ǫ→ 0+. But he is eliminated in
Arrow-Raynaud’s first round. (Also, essentially, demonstrates
failure of “later-no-harm.”) N

Arrow-Raynaud has a few compensating virtues of greater re-
sistance than Condorcet methods to the strategic vulnerabil-
ities in table 6.4. (One of these virtues – shared by Simpson-
Kramer – is: adding votes which rank A top, to a scenario
in which A uniquely wins, cannot prevent A from winning;
and adding votes ranking B bottom, to a scenario in which B
did not win, cannot cause B to win.) But they seem nowhere
near sufficient compensation.
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#voters their vote
3 A > D > B > C
3 A > D > C > B
4 B > C > A > D
5 D > B > C > A

Figure 6.23. 15-voter “no-show paradox” example for
Arrow-Raynaud voting. In the first round, C’s biggest
victory (over A) is only by 3, which is a smaller margin than
everybody else’s biggest pairwise victory (A over D by 5, B
over C by 9, D over B by 7). Hence C is eliminated. In
the second round, B’s biggest victory (over A by 3) is smaller
than everybody else’s, so B is eliminated. In the final round,
A wins by 10 to 5 over D.

Now add 4 extra votes C > A > B > D to get a new 19-voter
situation. In the first round, D’s biggest victory (over C or
B) is only by 3, which is a smaller margin than everybody
else’s biggest pairwise victory (A over D by 9, B over C by 5,
C over A by 7). Hence D is eliminated. In the second round,
A’s biggest victory (over B by 1) is narrower than everybody
else’s, so A is eliminated. In the final round, B wins 12 to 7
over C.

Thus the 4 extra votes, despite ranking A > B, caused A to
lose and B to win. N

6.25 Bucklin

◮ Bucklin tries to find a majority for some candidate by
counting only the first-place votes. If no candidate has more
than V/2 votes, all second-place votes are added to the count,
then third-place, etc., until the candidate with the most votes
has a number of votes exceeding V/2; he is the winner. At
most 1 + ⌊N/2⌋ rounds are required.

Bucklin was used in 7 US states starting in 1912 in votes for
important offices, including gubernatorial races. It is men-
tioned in [19].

Bucklin resembles approval voting (§7.7) in the sense that if
the last Bucklin round is the kth, then the same result would
be obtained by a Bucklin election and an Approval election
in which each voter “approved” all (≤ k)-ranked candidates.

Bucklin also resembles plurality voting in some ways, but im-
proves upon it in others – for example it is not capable of
electing a Majority-Loser, although Plurality can. Bucklin
suffers from many of the same “vote splitting” problems as
does plain plurality: lack of “clone immunity,” failure to al-
ways elect Condorcet-winners (table 6.3), and capability of
electing Condorcet-losers (table 6.24).

#voters their vote
4 A > L > B > C
4 B > L > C > A
4 C > L > A > B
3 A > B > C > L
3 B > C > A > L
3 C > A > B > L

Figure 6.24. Bucklin can elect Condorcet-loser. 21-
voter example. First round: A, B, C tied with 7 votes. Sec-
ond round: The Condorcet-loser L has 12 votes, exceeding
the 21/2 required for election, while A, B, C each only have
10 votes. N

Favorite betrayal:36 In table 1.1 the unique Bucklin winner
is B. If the two C > A > B voters had insincerely voted
A > C > B (“betraying their favorite” C) then the unique
Bucklin winner would have been A, which from their point of
view would have been an improvement.

Truncation: In the same example, if the 5 A > B > C voters
had truncated their votes by just saying “A” then A would
have won. (I.e.: a voter’s second-choice vote often can help
to defeat his first-choice.)

The fact that in Bucklin, it can often be strategically advanta-
geous to refuse to provide a second-choice vote – resulting in
plurality-style voting and thwarting Bucklin’s goal of causing
voters to express full preference orderings – was the main rea-
son that Bucklin was abandoned, eventually by all US states.

A 2-round Bucklin system (essentially) remains in use in the
London Mayor’s election (where it is called the “supplemen-
tary vote”).

Tables 6.25 and 6.26 demonstrate some other Bucklin patholo-
gies by Kevin Venzke and Markus Schulze respectively.

#voters their vote
5 A > B > C
4 B > C > A
2 C > A > B

Figure 6.25. Bucklin “no-show paradox.” For the first
9 votes, A is a majority favorite and wins in Bucklin round
1. The last 2 voters would be best off not showing up since
their effect is to remove the majority favorite and cause their
most-hated candidate B to win in round 2. N

#voters their vote #voters their vote
19 A > C > B 4 A > B > C
20 B > C > A 5 B > C > A
1 C > A > B 6 C > A > B
1 C > B > A — —
1 B > A > C 4 A > B > C
1 A > B > C 5 C > A > B

Figure 6.26. Bucklin reversal and subdistrict-
consistency paradoxes.
(left) C is the unique Bucklin winner. When all individual
preferences are reversed, it still is.

(right) C is the unique Bucklin winner for either the first 15
or the last 9 votes, but for the combined 24-vote set, A is the
unique Bucklin winner. N

36A more common kind of favorite betrayal in Bucklin voting is the same story as in plain Plurality voting – if one’s Favorite has essentially no
chance of winning, and we are convinced the winner is going to be either A or B by a first-round majority, then one’s best strategic move is to
abandon Favorite and vote for the best among {A, B}.
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6.26 Woodall’s DAC [83]

In 1997, Douglas Woodall introduced his Descending Ac-
quiescing Coalitions (DAC) method, which probably takes
the brass ring as the most complicated ranked-ballot voting
method seriously proposed so far.

◮ A voter “acquiesces” to a set of candidates if he does not
rank any candidate outside the set higher than any inside the
set. (Every voter acquiesces to the full candidate-set.)

Sort all possible sets from most acquiescing voters to fewest.
Going down the list, disqualify every candidate not found in
each set (i.e. take set intersections) unless that would disqual-
ify all remaining candidates (i.e. would result in the empty
set). Continue until only one candidate is not disqualified; he
is the winner.

Although it might seem that DAC requires exponential run-
time because there are 2N possible candidate-subsets, in fact
there is a polynomial-time algorithm because the number of
nonempty subsets that anybody acquiesces to,37 is at most
V N . We simply find all of them and store them in a suitable
data structure such as a trie or hash table, as we do so com-
puting the voter-count acquiescing to each one. With a slight
amount of cleverness, this requires only O(V N) steps. The
sorting then may be done in O(V N lg V ) steps and then the
set-intersection requires O(N) steps per intersection, i.e. at
most O(V N2) steps total. If the number of candidates N is
smaller than the number of bits in a computer word, then each
set-intersection may be done via a word-wide bitwise-AND in
only 1 step. Also, often only O(V + N) set-intersections are
required. In either case the runtime bound could be decreased
to O(V N lg V ).

Woodall proved DAC satisfies “participation,”38 “majority-
winner,” most (but not all) monotonicity properties, and
“later-no-help,” although it fails “later-no-harm.”

#voters their vote
4 A > B > D > C
4 B > C > D > A
4 C > A > D > B
1 D > B > A > C
1 D > C > B > A
1 D > A > C > B

Figure 6.27. Woodall-DAC can elect a Condorcet-
loser. In this 15-voter example, 5 voters acquiesce to each
3-set containing the Condorcet-Loser D (beating out all other
3-sets, 2-sets, and singleton sets, all with at most 4 acqui-
escers); therefore D wins. N

In the DH3 example in figure 6.4, if x1 = x2 = 10, y1 = z2 =
11, y2 = z1 = 8 then Woodall-DAC will elect the “dark horse”
D. This proves Woodall can “fail the DH3 test,” but it also
is capable of passing that test, for example if x1 = x2 = 10,
y1 = y2 = z1 = z2 = 9 then it elects A and spurns the
Condorcet-winner D.

Woodall-DAC enjoys “clone-immunity.” That is because if, in
each candidate subset, a candidate is replaced by the full set
of his clones, then that set has exactly the same acquiescence
counts as it had before cloning, and the only way the proce-
dure can delete a clone from a set (unless it is the full set of
candidates) is to delete somebody else at the same time.

6.27 SPl: Sarvo-plurality (2004) [71]
◮ For each k (1 ≤ k ≤ N) let Vk be the number of voters
who top-rank candidate k. As usual we also let Ukj be the
number of voters who prefer k to j. Define

Ek
def
=

Vk

V

∑

j 6=k

(
Vj

V − Vk
+

Vj

V − Vj

)

Ukj . (32)

The candidate W with the maximum EW wins.

Favorite-Betrayal Example: In the situation of table 6.5,
B wins because EB ≈ 5.51 is greater than EA ≈ 3.76 and
EC ≈ 3.28. If the 6 C > A > B voters insincerely switch to
A > C > B (“betraying their favorite”C) then A becomes the
winner since EA = 11 is greater than EB = 8 and EC = 0.

The “sarvo” methods [71] are designed to try to be immune
to strategic voting, but as this example shows, that attempt
is not completely successful.

6.28 Smith set
◮ The “Smith set” (introduced in the early 1970s? But Dodg-
son knew of it a century before?) is the smallest nonempty
set of candidates such that each candidate A in the Smith set
beats each candidate B not in it: MAB > 0. This always is a
nonempty set. If a Condorcet-Winner exists, then the Smith
set is the singleton set consisting of that winner.

By starting with the Smith set, and then using some other
voting procedure to decide among the Smith candidates (if
there are more than one), we can get numerous interesting
Smith-hybrid voting systems. Such hybrids will always elect
a Condorcet-Winner if one exists. The Smith set can be every
candidate (the same is true of the Fishburn and Banks sets
below39) hence has little if any use as a stand-alone voting
system.

Forest Simmons pointed out this interesting

Lemma 2. Any rank-order-based voting method featuring
“immunity to second place complaints” (I2PC; the candidate
X who would win with the same votes but with the winner
W removed from the election, should not pairwise-beat W )
automatically must elect a Smith set member as winner.

Proof: (by induction on the number of candidates, and ig-
noring the possibility of pairwise ties):

If there are fewer than two candidates there is nothing to
prove.

If there are just two candidates, then I2PC means that the
winner beats the only other candidate, and so is in the Smith
set.

37Assuming voters provide full tie-free orderings of the candidates as their votes. The Woodall DAC procedure would in fact permit a vote merely
to be a partial ordering of the candidates, in which case a voter could acquiesce to as many as 2N subsets and I do not know of a subexponential
algorithm.

38For definitions of such properties as “participation” (IP) see §9. Proof sketch: The whole effect of adding an extra ballot acquiescing to a set
S is to increase the acquiescence counts for some sets X with X ⊆ S or S ⊂ X. This cannot decrease S’s chances of victory.

39Make one big Condorcet cycle.
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If there are n ≥ 3 candidates, then (by induction) withdrawal
of W gives the win to a member X of the Smith set of the
reduced election. But by I2PC, W beats X , so W has a“beat-
path” to every candidate (except self), and so W cannot be a
member of the complement of the Smith set and hence must
be a member of the Smith set. Q.E.D.

6.29 Fishburn set [26]
If MZA > 0 implies MZB > 0, and for some X , MAX ≥ 0
and MXB > 0, then we say that A “Fishburn dominates” B.
In other words, A Fishburn dominates B if every candidate
who pairwise beats A also beats B, and A beats or ties some
candidate who beats B.

◮ The candidates that are not Fishburn dominated are the
“Fishburn set.” The Fishburn set is always nonempty and is
always included inside the Smith set. If a Condorcet-Winner
exists, then the Fishburn set is the singleton set consisting of
that winner.

By starting with the Fishburn set, and then using some other
voting procedure to decide among the Fishburn candidates
(if there are more than one), we can get numerous interesting
Fishburn-hybrid voting systems. These hybrids will have the
advantage that they will always elect a Condorcet-Winner if
one exists.

6.30 Banks set [3][52]
◮ Define “B ≫ A” if and only if B pairwise defeats A and B
wins among all C that pairwise defeat A. The “Banks set” is
characterized as the set of candidates B which fulfil B ≫ A
for at least one A.

Equivalently, the Banks set consists of the Condorcet-Winners
of maximal candidate-subsets. That is, if C is the Condorcet-
Winner within some candidate-subset X (with at least one
element besides C), but there is no Condorcet-Winner in any
larger candidate-subset Y (i.e. with X ⊂ Y ), then C is in the
Banks set.

If a Condorcet-Winner exists, then the Banks set is the sin-
gleton set consisting of that winner.

The Banks set is nonempty and contained in the Smith set.

By starting with the Banks set, and then using some other
voting procedure to decide among the Banks candidates (if
there are more than one), we can get numerous interesting
Banks-hybrid voting systems. Such hybrids will always elect
a Condorcet-Winner if one exists.

7 Systems in which each vote is a
real N-vector

7.1 Dabagh “vote and a half” (1934) [19]
◮ Each voter awards 1 point to one candidate (presumably his
favorite) and half a point to another (presumably his second
choice). The candidate with the most points wins.

7.2 “Vote-for-and-against” (2004)
◮ Each voter awards 1 point to one candidate (presumably
his favorite) and negative 1 point to another (presumably his

most-hated). The candidate with the greatest point sum wins.

(Both Dabagh and for-and-against may be viewed as weighted
positional systems. In the 3-candidate case Dabagh, for-and-
against, and Borda are equivalent.)

Although the strategic thinking in this system is similar to
Plurality (“must vote among the two frontrunners to avoid
wasting my vote”) and hence might be presumed to lead to
2-party domination – there is an interesting twist: One of the
two “frontrunners” is always going to get a negative number
of votes! Hence in a close race where a third-party candidate
had a number of votes exceeding the margin between the per-
ceived “frontrunners” (such as Bush vs. Gore in the US 2000
Presidential election, where Nader’s votes exceeded the Bush-
Gore margin) the third-party candidate could be elected. So
it is an interesting question just what effects for-and-against
voting would have on 2-party domination.

For-and-against voting occupies a unique place in the WP
systems: it is the only one with wtop = −wbottom which is im-
mune (in the absence of a multi-way tie) to the DH3 pathology
of §6.3.

7.3 Signed: G.A.W.Boehm’s “negative vot-
ing” (1976)

We hereby rename this “signed voting.”

◮ Each voter awards either 1 point to one candidate (pre-
sumably his favorite) or negative 1 point to to one candidate
(presumably his most-hated). The candidate with the great-
est number of points wins.

7.4 Cumulative voting (continuum version)
◮ Each vote is a real N -vector every entry of which is nonneg-
ative with all of the entries summing to 1. For example a legal
vote would be (0.4, 0.3, 0, 0.3) in a 4-candidate election, since
0.4+0.3+0.3 = 1. The winner is the candidate corresponding
to the maximum entry in the sum-vector ~s.

(C.L.Dodgson mentioned an integer version of this method,
under the name “method of marks,” in his first pamphlet. It
is also mentioned in [43].)

Cumulative voting is not immune to candidate “cloning,” as
table 7.1 demonstrates.

#voters their vote
2 (0, 1) → (0, 0, 1)
3 (1, 0) → (1/2, 1/2, 0)

Figure 7.1. The first candidate A wins the election by 3
votes to 2 over B. But after cloning, A1 and A2 each get 3/2
votes and lose to B. N

7.5 “Asset voting” (W.D.Smith 2004) [69]
◮ Same as the above cumulative voting system, except for
choosing the winner. After we compute the sum-vector ~s, we
regard each sn as the amount of an “asset” now owned by
candidate n. The candidates now negotiate; any subset of
them may redistribute their assets among themselves. After
all negotiations and redistributions end, the candidate with
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the most assets wins. (Originally proposed as a multiwinner
system, in which case the k topmost asset-rich candidates win,
if we want k winners. Variants involve placing constraints on
the negotiation procedure.) This is the only voting system
mentioned here in which the candidates play an active role.

Tideman & Tullock’s 1976 “perfect” scheme for voting-with-money [79]

In principle, the ultimate voting scheme would be“honest util-
ity voting” in which each voter states the “utility” (measured
in some common, agreed-upon units) of each possible candi-
date for him, and then the candidate with the greatest utility
(summed over all of society) is elected.

Unfortunately, honest utility voting seems unachievable in
practice, since (a) there are no common agreed-upon units,
and (b) just one dishonest-strategic voter, by making some
vast exaggeration, could control the election. (However, in
certain unusual scenarios, such as where the voters are not
dishonest humans, but rather honest robots, and in which
utility is easily measured, this voting method would be best
possible.)

Therefore (the common thinking before the 1970s was) honest
utility voting is a pipe dream – an idealization of no practical
interest. However in the 1970s several people realized, some
independently, that, at least in a mathematical idealization of
voters as rational economic money-maximizing animals, such
a “perfect” voting system actually is achievable!

The initial idea (1961) was due to W.Vickrey [81] in a differ-
ent context: auctioneering. Imagine some moderate number
of bidders (e.g. 10-20) want to buy some expensive object.

Vickrey second-price auction protocol:

1: Each bidder privately estimates the true worth of the ob-
ject, to him, in dollars.

2: Each bidder submits that secret estimate, in a sealed en-
velope, as his bid.

3: All the envelopes are opened. The winner is the one who
submitted the greatest bid, but now he only pays the
amount specified by the second -highest bidder. [Modi-
fication suggested by Jan Kok: if the top bid is T and
the second-top bid S, then we can make the payment be
S + (T − S)X for any constant or randomly chosen real
X with 0 ≤ X < 1.]

Vickrey argued that in this scenario, there is no strategic mo-
tivation for bidders to be dishonest in their bids, and plenty of
motivation for them to be honest.40 This is also true in Jan
Kok’s modified version of Vickrey. Note that in this scheme it
is important that the other bids be secret, since a bidder who
knew the topmost external bid could then have motivation to
be dishonest and bid 1 cent below it to minimize the profit of
that enemy bidder. But it also is important that the bids ulti-
mately be revealed since otherwise the auctioneer could cheat
by pretending the second-top bid was much higher than it
really was.

◮ Clarke-Groves-Tideman-Tullock public choice pro-
tocol:

1: Each voter as his (secret ballot) vote submits his private
estimate of the true worth of each candidate (or election
alternative) to him, in dollars.

2: The alternative (or candidate) with the greatest amount
of money voted for it/him, wins.

3: We now re-examine all the votes, but now with the name
of its voter-author unveiled on each. Suppose that vote
“made a difference,” i.e. caused the election result to dif-
fer from what it would have been with that vote removed.
Namely, suppose without that vote-bid B, alternative Y
would have won, but with it alternative Z wins. Sup-
pose the minimum amount of money that vote could have
been replaced by that still would have caused Z to win,
is MZ > 0. Then that voter now must pay a fee (the
“Clarke tax”) equal to MZ . [Modified version: the pay-
ment is MZ + (B −MZ)X for any constant or randomly
chosen real X with 0 ≤ X < 1.]

The Clarke-Groves-Tideman-Tullock central claim
[13][37][79] is that there is no strategic motivation for vot-
ers to be dishonest in their votes, and plenty of motivation
for them to be honest.41 And if the votes indeed are hon-
est, then this voting system therefore is “perfect” and always
elects the best choice, as measured in (perceived) dollars, for
all of society.42 And this is also true for the Jan Kok modified
version.

voter Y Z
voter #1 5 0
voter #2 5 0
voter #3 3 0
voter #4 0 4
voter #5 0 7

Figure 7.2. A Clarke-Tideman-Tullock 2-candidate
election. Y wins by $13 to $11. Voters #1 and #2 then
pay Clarke tax $3 each (because without voter #1, Z would
have won by $3), and voter #3 pays $1. The other voters pay
nothing. N

Unique features. This is the only system (of those we sur-
vey) claiming to result in “perfection” and “voter honesty.” It
also is the only one that directly involves money (and there-
fore it cannot be used in abstract scenarios in which the “vot-
ers” actually are not money-owning economic entities).

Additional work. For some reason, interest in this scheme
apparently died after 1984 and it was almost entirely forgot-
ten. (Later note: actually it was not forgotten; a remarkable
book by Bailey [2] uses it as a key ingredient.) One of the last
works (besides Bailey) on the matter was by Tideman [76] who
conducted experiments on actual use of the scheme. Specif-
ically, Tideman paid several college fraternities to do their
decisions by his process instead of plurality voting for about
1 year. Tideman’s experiments failed to reach a convincing
conclusion. The fraternity members (polled afterward) pre-
ferred plain voting to Tideman’s method, 108-to-56, because
of increased administrative work! But they preferred Tide-
man (112-to-42) if the issue-proposer was willing to pay a

40Bid too high? Risk paying more than it is worth. Bid too low? Risk not acquiring the object at cost maximally below its true worth to you.
41Bid too high? Risk paying more than the election Y → Z result-change you caused, actually was worth to you. Bid too low? Risk not acquiring

the election result you want, even though you could have done so at cost below its true worth to you.
42Tideman and Tullock felt obliged to point out that nevertheless their method “would not cure cancer.”
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administration-fee to get his issue considered by the Tideman
method – but that in fact never happened during the subse-
quent year.

Tideman’s process yielded different decisions than plain vot-
ing in about 10% of the fraternity decisions. This led to about
2.25% extra perceived dollar benefit. However the “Clarke
taxes” paid were larger than that (namely 3.04%) so in some
sense it wasn’t worth it. However, frat houses are small – and
in larger elections the Clarke taxes would be comparatively
negligible. Finally, there may have been collusions or other
effects (see criticism list below) which really caused CTT vot-
ing to perform even worse, and if so Tideman had no way to
know it.

Criticisms. Unfortunately there are several reasons that
Clarke-Tideman-Tullock, in practical use in large elections,
would in fact fall considerably short of perfection.

1. In the large elections typical in governments, the proba-
bility is extremely small that any one vote will “make a dif-
ference.” (In all the ≈ 2000 US presidential and senatorial
elections so far, there has never been a case where any sin-
gle vote has affected the outcome.) This contrasts mightily
with the situation in most auctions (typically there are 10-20
bidders so each has a reasonable chance – 1/10 or 1/20 – of
winning) and in most small fraternity-house elections. And
that contrast, as we shall see next paragraph, does matter.

2. In auctioneering and fraternity houses, the problem of
bidders not paying, is a minor problem. But in nationwide
elections in the very rare instances when payment was re-
quired, there might be a severe nonpayment problem. Even
if all voters were honest, some would die during the election.
And if only one election in a million required the typical voter
to pay, that might encourage a culture of dishonest exagger-
ated votes, followed on the rare occasions every 3000 years
(!?) where payment actually was required, by a culture of
tax-evasion. How could voters be forced to pay? Throwing
the election the other way in response to nonpayment would
not work because the other side also might not pay! This all
could lead to a nightmare scenario giving a new meaning to
the term “election fraud.”

The problem here is the combination of 1 and 2. To defeat
it we could require each voter to submit his payment in “es-
crow” (to be refunded in most cases). That would avoid the
nonpayment problem. However, it would cause a new prob-
lem: the cost in time, hassle, and interrupted investments to
place one’s money in an escrow account – a cost greatly and
unfairly varying from person to person – would vastly exceed
the actual expected value of the Clarke tax. (If the Clarke tax
must be paid 1 time in 40,000 then even missing out on one
day of interest even at only 1% annually, would exceed the
expected value of the Clarke tax.) Furthermore, the escrow
account set-ups and necessary financial motion might defeat
the goal of secret voting. (And, as with Vickrey auctions,
secrecy is essential to prove the CTT central claim on which

everything rests.) Therefore, in practice the economic ratio-
nale of this sort of voting would be dominated by these distor-
tionary effects and the CTT goal of a voting system in which
undistorted true utility dominates would not be achieved at
all.43

The point of this has been that certain “negligibly small” ef-
fects such as the cost of moving money and cost of voting,
while they are negligibly small in the case of auction of an ex-
pensive object, are in fact the most important thing in the vot-
ing case. Margolis [48] made similar points. He observed that
in a typical election situation the expected Clarke tax on a
typical voter would be 10−5 of one penny, and hence expressed
doubt that voters would bother to work out and use their
optimum-utility votes. The transport, money-motion, and
other transactin costs experienced by a typical voter would
dwarf this and hence, rather than being “negligible” would in
fact“dominate”the thinking of rational voters. The two prob-
lems of auctineering and voting might seem almost equivalent
except that some numbers are changed, but the problem is
that these numbers change so vastly that the approximations
of certain effects as negligible, become completely invalid.

3. Most people would not agree utility is the same thing as
money – even though (economist) Tullock may think it is! If
alternative A leads to a rich man dying while alternative B
kills five poor men, then CTT voting would choose alterna-
tive A. More generally this system might do whatever the
rich and fanatical want, and might exhibit a systematic bias
against poor people.

4. The Clarke taxes would in fact be paid into government
funds which would then be used to reduce (ordinary) taxes.
Hence in reality the true amount voters would effectively pay,
would differ from the Clarke tax. That in practice would
distort the system away from the ideal of employing “perfect
utilities.” (One nightmare: consider a candidate whose plat-
form was “if elected, I will refund all Clarke taxes.”)

5. Collusions: Suppose “Nixon” bids some enormous amount
of money and “Agnew” also does, to make the Nixon-Agnew
ticket win. Now, each of {Nixon, Agnew} alone did not change
the election result because their bids were each vastly huger
than everybody else in the country combined, so Nixon could
argue “I would have been elected anyway thanks to Agnew’s
bid” therefore Nixon pays zero Clarke tax. Similarly Agnew
also pays zero and both get elected for free. This pathology
could reduce everything to 2-man teams of colluders each try-
ing to “name the largest number they can” – which would be
a ridiculous dysfunctional state of affairs.

However, this Nixon-Agnew criticism largely falls to the
ground if escrowed vote moneys are demanded. That makes
ridiculously large bids impossible. But that, as we said, leads
to other difficulties. (Another related to #3 is: what if my
utility exceeds the amount of money I am able to raise in cash
form?44)

43To minimize these effects, the government could give each voter a “free donation” of a certain small amount of money into his escrow account,
provided he voted, and could pay interest on the escrow accounts. These moves would attempt to null-out transaction costs. However, there would
unavoidably be remaining inequities and mismatches in that nulling-out attempt, which would usually still dominate the true expected utility
estimates made by, and true “costs of voting” for, each voter.

44Consider abortion rights. Jill in losing her abortion rights, is losing a lot of expected dollars. The ratio of abortions to live births was approx-
imately 32:100 in the 1990s USA. Suppose it costs $100,000 to birth and raise a child but only $300 to get an abortion (1990s dollars). Suppose
Jill is going to have 3 children and hence (on average) one abortion. That means $100,000 of expected utility is at stake for her if there is a vote
on a law that would make it impossible for her to abort. (Actually she could still try to get an abortion in a foreign country, or try to abandon
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Here is another (new) idea to reduce the collusion problem:
randomization. Suppose every vote-bid X is automatically
replaced, before doing the election, with a random number in
the interval [0, 2X ] with mean X . One possible probability
distribution would be the two-mass one with either 0 or 2X
chosen by a coin flip.45

This idea has the disadvantage that it adds extra “noise” to
the election and that it can stick unlucky voters with a higher
than-expected Clarke tax bill (although they could compen-
sate by underbidding by a constant factor). But its advantage
– and point – is that it causes the Nixon-Agnew collusion we
just described to become very risky. Randomization causes
your collusion-teammates to become effectively “untrustwor-
thy” even if they actually were totally loyal.

Incidentally, Margolis [49] tried to argue using differential
equations that the CTT scheme was the essentially unique
one with its properties. Margolis unfortunately did not actu-
ally state an explicit theorem with proof, but suffice it to say
that Margolis was wrong in the sense that we have just exhib-
ited two different kinds (Jan Kok’s X-generalization and our
randomization generalization), constituting an infinite num-
ber of, ways to generalize CTT. So no, CTT is not unique at
all, but yes, it is unique if we restrict to deterministic vot-
ing schemes in which voter payments are made as small as
possible.

6. H. Margolis [48][50] offered another criticism: which is
that voter “altruism”would invalidate CTT. That is, in many
cases the amount of money at stake for each voter is small so
that voter is willing to be altruistic and lose money to further
what he considers to be a good cause. That seems to me to be
an excellent and completely valid criticism: the only reason
almost anybody votes at all, is “altruism” since it is totally
economically irrational to vote considering the cost in time
and transport to vote versus the low probability of that vote
having an election-swinging effect. So altruism (aka economic
irrationality) is not “negligible”; it is the “dominant” effect in
voting! Given any such huge distortionary effect on utilities,
CTT’s claims of “perfection” fall to the ground.

In my view these criticisms are very serious and probably ren-
der the Clarke-Groves-Tideman-Tullock voting system prac-
tically useless (or at least uncompetitive enough to remove it
from consideration) for large governmental elections.46 CTT
also is useless for (or at least dubious for) small elections such
as in Tideman’s frat house study (since for them the Clarke
taxes exceed the benefit of switching to the system). However,
for elections of intermediate size (500-50000 voters?) and in
which utility does closely correspond with money (stockholder
elections in corporations, with Clarke taxes donated to char-
ity?) this system may make excellent sense. It might also
make sense if future techno/political developments alter the

nature of “money” so that large anonymous and undetectable
monetary transfers become easy and cheap.

7.6 Median Rating
◮ Each alternative is given a score (for example from 0 to
100) by each voter. The alternative with the highest median
score wins.

This method is ludicrous in the presence of strategic voters,
since they will rate everybody either 0 or 100. Then each
median therefore will be either 0 or 100, usually causing a
vast number of ties, in which case the voting system has not
actually accomplished anything.

7.7 Approval Voting [8]
Approval voting was invented by 6 political scientists47 inde-
pendently during 1968-1978, but they all were beaten to the
punch by an amateur – artist, astronomer, and inventor Guy
Ottewell.

◮ Each vote is a real N -vector every entry of which is in
the 2-element set {0, 1}. For example a legal vote would be
(1, 0, 0, 1, 1) in a 5-candidate election. The winner is the can-
didate corresponding to the maximum entry in the sum-vector
~s.

#voters their vote
1 A > B > L > C
1 B > C > L > A
1 C > A > L > B

Figure 7.3. Approval voting can elect a Condorcet
loser. All voters approve of their top 3 candidates. The Con-
dorcet loser L is elected since he is the unique candidate with
unanimous approval.48 N

7.8 Range voting [68]

◮ Each vote is a real N -vector every entry of which is in
the real interval [0, 1]. For example a legal vote would be
(0.4, 0.3, 0, 0.7, 1) in a 5-candidate election. The winner is the
candidate corresponding to the maximum entry in the sum-
vector ~s.

This system in used by various organizations on the internet
to rate the quality of movies, recipes, etc. A system very
much like it has been used to select gold medal winners in
Olympic events.

Range voting is more expressive than almost every voting sys-
tem considered so far – permitting not only expression of pref-
erences, but also of intensity of preferences – and also one of

her child for adoption, so it is less than $100,000, but we shall ignore that.) But more utility is at stake the younger Jill is. However, the younger
Jill is, the less likely she has $100,000 to vote with! Now on the other side are the moralists who believe abortion is murder. From their view, it is
worth all the money some fetus would ever be able to earn, to avoid being murdered. However... fetuses don’t have any money and can’t vote. So
it appears both sides in this issue are going to regard the CTT voting system as unfairly biased against them and invalid. How do CTT-proponents
answer them?

45The problem of making everybody confident the randomizations were genuine, independent, and unbiased, is a solvable cryptographic problem,
see chapter ???.

46Also, CTT voting is unconstitutional in the USA under the 24th amendment.
47John Kellett, Kenneth Mott, Robert J. Weber, Steven J. Brams, Peter C. Fishburn, and Richard A. Morin. A system very much like AV is

used by the United Nations Security Council to vote for Secretary General.
48However, in this situation, L, despite being the Condorcet loser, nevertheless can be the best winner for society. For example if the utilities of

the candidates to each voter are 9, 8, 7, and 0, then electing L would cause the greatest benefit to society.
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the few systems considered here in which votes have contin-
uum freedom.

#voters their vote #voters their vote
999 A > B ≫ C 49 A≫ B > C
1 C > B ≫ A 48 C ≫ B > A

3 B > A≫ C

Figure 7.4. Some examples where intensity of prefer-
ence matters.
(left) Saari’s anti-approval example. Approval voting would
elect B, but the societally-best (and Range and Borda and
Condorcet) winner is A.

(right) Anti-Condorcet example. The Condorcet-winner is B,
but A is the societally-best (and Approval and Range) winner.
N

Approval and Range voting are uniquely invulnerable to ma-
nipulation by strategic voters, in this weak sense: If a voter
knows the exact totals of all the other votes, then that voter
can cast a strategically-optimal approval vote which happens
to also be honest in the sense that it is a limit of vectors ~x such
that the >, <, and =-relations among ~x-entries agree with
that voter’s honest preference relations among candidates.

Also, in a 3-candidate election,49 even with only inexact prob-
abilistic knowledge of the total of the (large number of) other
votes, one may find a strategically-optimal and limit-sense-
honest Range and Approval vote. Call the two frontrunners
(most likely to win) A and B. Let their a priori proba-
bilities of election be PA and PB respectively. Award the
better one 1 and the worse one 0. Now award C vote 1 if
UC > PAUA + PBUB where UK denotes your personal utility
for the election of candidate K.

In contrast, dishonest voting – even in 3-candidate elections
– often is strategically optimal in the IRV (table 6.12) and
Condorcet least-reversal50 systems (in which it usually pays
to rank your favorite’s most-feared rival artificially“last”even
if you do not honestly regard him as the worst of the three).

7.9 Condorcet-range voting
The following method was suggested to me by Clay Schoen-
trup, a Libertarian from Portland Oregon. It is more compli-
cated than plain range voting, but it has the advantage (in
some eyes) that it elects Condorect winners when they exist.

◮ Each vote is a real N -vector every entry of which is in the
real interval [0, 1]. Ignore the actual numerical values of the
scores for the candidates, only taking account of the < and
> and = relationships amongst them. If there is a Condorcet
(“beats all”) winner, elect him. Otherwise, elect the range-
voting winner, with the greatest sum-of-scores.

Condorcet-range voting is monotonic in the sense that raising
some candidate X ’s score in your vote (while leaving the oth-
ers fixed) cannot decrease X ’s chances of winning. (Hint for
proof: As a lemma, prove making an adjacent interchange of
X > Y to Y > X in one vote by altering the vote’s score for
Y , cannot hurt Y ’s winning chances.)

#voters their vote
3 A = 1, B = 0.3, C = 0, D = 0.5
3 A = 1, B = 0, C = 0.3, D = 0.5
4 A = 0.1, B = 1, C = 0.2, D = 0
5 A = 0, B = 0.9, C = 0.5, D = 1
6 A = 0.1, B = 1.0, C = 0, D = 0.2

Figure 7.5. “No show paradox” in Condorcet-Range
voting. In the situation above the line, there is no Condorcet
winner so that B wins (since the totals are A = 2.1, B = 2.2,
C = 1.0, D = 2.0). But if we add the 6 voters below the line,
all of whom top-rank the current winner B, then D becomes
a Condorcet winner and wins. Those 6 voters were better off
“not showing up” (and if we add them one by one, the first
individual voter to cause the winner-change, was better off
not showing up). N

#voters their vote
8 A = 0, B = 1, C = 0.5
6 A = 0.5, B = 0, C = 1
5 A = 1, B = 0.5, C = 0

Figure 7.6. Favorite-betrayal in Condorcet-Range
voting. (Based on table 6.5.) In this situation, there is no
Condorcet winner so that B wins (totals A = 8, B = 10.5,
C = 10). But if the 6 voters in the middle line change their
vote to A = 1, B = 0, C = 0.5 (“betraying their favorite C”)
then the “lesser evil” A becomes the Condorcet winner and
wins. N

8 ???Sarvo-Range voting [71]

◮ Each vote is a real N -vector every entry of which is in the
real interval [0, 1], plus a single additional “strategy bit.”

We now randomize the order of the V voters (all V ! possible
ordering equally likely) and start computing the sum of the
vectors, one vector at a time, in that order, except that before
we incorporate each vector-vote ~v into the vector-sum, if its
strategy bit is 1, we first transform it as follows.

WRONG – NEED TO REDO???

procedure Strategic-transform
1: Reorder the coordinates i of the vector-vote ~v so that the

current (partial) vector sum ~s is in decreasing order, i.e.
the candidates are in decreasing order of performance-so-
far in the election. (Break ties randomly.)

2: for i = 1, . . . , N do
3: A← ((i− 1)A + vi)/i;
4: if vi > A or A = vi = vi+1 = vi+2 = · · · = vj−1 > vj

then
5: wi ← 1;
6: else if vi < A or A = vi = vi+1 = · · · = vj−1 < vj

then
7: wi ← 0;
8: else
9: wi ←random value;

10: end if

49Or a “trichotomous” election in which each voter regards all candidates as falling into one of only three equivalence classes.
50Note: many other systems, such as Tideman ranked pairs, Schulze, and Raynaud, are equivalent to Condorcet least-reversal in the 3-candidate

case.
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11: end for
12: Un-reorder the coordinates of ~w and output it.

(If a voter’s strategy bit is 0 then we simply use his un-
transformed vote ~w = ~v.) We compute the full sum ~s of all
the (perhaps transformed) votes ~w. This ~s will be a function
of the random order among the voters that we used (as well
as among the random choices inside Strategic-transform).

We take the average of ~s over all V ! possible voter-orders (or,
what is more feasible, we average over a vast number of ran-
dom orders and keep going until the “noise” seems sufficiently
small) and the winner is the candidate corresponding to the
maximum entry in the averaged ~s.

Note: Sarvo-range voting is exactly the same as range voting
if there are only honest voters. It only differs in the presence
of strategic voters and is intended to equip range voting with
increased resistance to strategic manipulation.

9 Properties

There are numerous desirable-sounding properties which a
voting system might or might not have. Here are some of
the more important ones:

Anonymity: means that all voters are treated equally.
Neutrality: means that all candidates are treated equally.
Homogeneity: means duplicating each vote leaves election

result the same.
All the systems we have described are Anonymous, Neutral,

and Homogeneous.
CW: If a Condorcet-Winner (who would beat every other

candidate in a one-on-one plurality election compatible
with the original votes) exists, he is elected. A related
but stronger demand would be that the winner must
always belong to the Smith Set.

Condorcet himself may have had a slightly different defi-
nition in mind, which I shall call CW′: replace the words
“plurality election compatible with the original votes”
with “election of the original type, with the same votes
with all candidates but these two omitted.” The two
definitions are equivalent when applied to virtually ev-
ery rank-order-ballot based method, but differ for, e.g,
range voting. Range voting disobeys CW but obeys
CW′.

IP: Incentive to Participate. Adjoining an additional set of
identical votes, all favoring A over B, cannot cause A
to lose or B to win.

AT: Add-Top: Adjoining an additional set of identical votes,
all ranking A top, cannot harm candidate A.

LN: Later-no-harm [83]: Adding a later preference to a ballot
should not harm any candidate already listed. Satisfy-
ing LN is highly related to, but not exactly the same
as (cf. figure tab:IRVantiex), removing the incentive for
voters to “truncate” their preference-ballots. In trying
to change from Plurality to a ranked-ballot method, LN
is an excellent selling-point to plurality-minded voters.
All methods that obey LN automatically also obey AT,
but not vice versa.

SD: Subdistrict Consistency. If two disjoint subsets of votes,
each by itself uniquely elects A, then the combined set
uniquely elects A also.

MN: Monotonicity. Increasing the rank of A in some set
of identical votes (while leaving the relative ranks of
the other candidates unchanged) cannot decrease A’s
probability of winning. (To prove a method mono-
tonic, it suffices to show that changing just one bal-
lot by a single adjacent-interchange [A > B becomes
B > A] cannot hurt B’s and cannot help A’s chances
of election. This idea makes it easy to see, for exam-
ple, that Improved-Dodgson, Bucklin, Fishburn-set and
Banks-set obey MN. In some other cases, e.g. Simpson-
Kramer, one may prove MN by reasoning directly from
the voting method’s definition.)

CI: Clone-Immune [78]. Adding “clones” of a candidate C
(whose relative rankings to other candidates, in all
votes, are the same as C’s) will not alter victory prob-
abilities.51 Warning: “clones” of A can be viewed as
slightly better or worse than A by voters – and are,
if we are discussing a preference-ranking-based system,
even one allowing ranking-equalities. (One could also
discuss “CI=” for ranking-based systems allowign rank-
ing equalities where we demand than all clones be given
exactlyequal rankings.) But if we are discussing real-
vector-based voting systems, we require all clones to re-
ceive arbitrarily close votes.

GU: Generically Un-tied. If V voters participate, each of
whom chooses his vote independently from some fixed
nontrivial probability distribution, then as V → ∞
while the number N of candidates remains fixed, the
probability of a tied election approaches 0, i.e. the prob-
ability a single-winner is got, approaches 100%.

CL: Incapable of electing a Condorcet-Loser. Related, but
weaker, would be the Majority Loser condition that a
candidate uniquely ranked bottom on a majority of bal-
lots, should be incapable of winning.

UD: Unanimous Domination. (Also called Pareto.) If at
least one voter ranks B over A and no voters rank A over
B, then A must not be elected. (A related, but weaker,
property would be the Unanimous Winner property that
anybody whom all voters rank best, must win.)

EP: Efficiently Parallelizable. When V ≫ N ≥ 2 there is
an efficient way to perform the election in which each
precinct only sends some kind of “subtotal” to the cen-
tral tabulating agency, i.e. a much smaller amount of in-
formation than sending every vote cast in that precinct
individually. And all the necessary communication is
one-way. Note: strictly speaking we have no proofs of
the nonexistence of such algorithms, so that all our as-
sertions of the falsity of EP are, in fact, merely (highly
plausible) conjectures. One could prove, e.g, the weaker
claim that IRV and Coombs election results are not com-
putable purely from the U -matrix ([63] p.463).

MJ: Majority. A candidate uniquely top-ranked by a major-
ity of ballots, is elected. Related, but stronger, is the
“Mutual Majority Criterion”: If there is a majority of

51More precisely: If there is a subset S of alternatives such that no voter ranks any alternative outside S between any alternatives in S, then
the election outcome must not change if a strict subset of S is deleted from the votes and from the set of nominees. By “not change” we mean the
same winner wins if the clones were of a non-winner, but if the clones were of the winner, then one of the clones still wins.
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voters which rank a set of candidates above all others,
then one of those candidates must win.

A related condition would be “Majority Defense” which
says that a majority is always capable of electing anyone
they choose (or blocking the election of anyone). Range
Voting fails Majority but satisfies Majority Defense.

FO: Definition of voting system is readily and naturally gen-
eralizable to make it output a full ordering of the can-
didates, rather than merely a single winner. (Actually,
any system outputting single winners may be made to
output an ordering by eliminating the winner and then
re-running the system to get the “second place finisher,”
etc. However this is not natural because it ranks the
2nd, 3rd,... place winners without utilizing information
about the 1st-place winner. Also this requires much
more work than simply doing everything only once.)

AFB: Avoidance of “Favorite Betrayal.”52 Voters never have
incentive to dishonestly rank someone over their fa-
vorite.

DH3: Avoids returning devastatingly poor results in the
DH3 scenario of §6.3 and table 6.4.

Honest versus Strategic voting. Although in the liter-
ature properties of voting systems are usually only analysed
under the assumption that the voters are honest, i.e. in terms
of the votes cast, they could also be examined for strategic
voters in terms of the honest votes they did not cast.

The results sometimes differ. For example, range voting with
honest voters can elect a Majority Loser, if 51% of the voters
considered him bottom-ranked by only a slight amount, while
49% consider him top-ranked by a large gap. But with strate-
gic range-voters, the ML cannot be elected.53 (Proof sketch:
The ML will get a minimum vote from over 50% of the voters.
But the more popular among the two pre-election-poll fron-
trunners will get maximum votes from over 50% of strategic
voters.)

Similarly range voting with honest voters can never elect a
candidate B who is ranked below some other (A) by 100% of
the voters; but range voting with strategic voters can uniquely
elect B [68].54

With honest voters, the Condorcet least-reversal system will
elect a Condorcet-Winner if one exists – but with strategic
voters, that Condorcet-Winner might no longer be one and
thus could avoid being elected. (And in the DH3 scenario
of table 6.4 the strategic voting creates a Condorcet-Winner
who with honest voting would be a unanimous-loser.)

#voters their vote
51 A, B > C
49 B, C > A

Figure 9.1. An example by Marc LeBlanc of how Ar-
row’s I.I.A. property can be both valid and invalid
under Approval voting. Under Approval voting, the first
group votes for B as a (successful) defense against the per-
ceived threat of C, and B wins. If C drops out of the race,
then the same voters would have instead voted A > B and A
would have won. Thus C’s decision to run, or not, affected
the result of the A versus B battle in an Approval election
with strategic voters acting in response to partial informa-
tion, whereas, with honest voters, C’s candidacy would have
been irrelevant. N

Implications among & theorems about these proper-
ties.

Additive-vector methods automatically satisfy SD, MN, IP,
AT, and ME, but automatically fail CW [67][85][87] and LN
(except if the “later-ranked” candidates have vector-entry 0,
as for approval and plurality voting, in which case LN is true).

SD-satisfying methods are the same thing as “composed”
weighted-positional scoring systems (i.e. the ties in a WP sys-
tem are broken by use of another, and so on55) [67][85][87][72].
Hence (assuming non-negative weights) they automatically
satisfy MN, IP, AT, and ME.

Every weighted-positional score-sum system (with honest vot-
ers) is non-immune to clones. The same is true for elimina-
tion systems whose rounds are based on WP systems (e.g.
Nanson, Rouse). Elimination systems based purely on in-
equalities among elements of56 the M -matrix, and in which
one’s clones cannot “protect” one from being eliminated, are
automatically clone-immune because once all of somebody’s
clones have been eliminated, the method proceeds as before.
Thus Tideman Ranked pairs, River, and Raynaud are clone-
immune.

But Simpson-Kramer is not clone immune since we can make
three clones of its winner forming a Condorcet cycle, who de-
feat one another by huge margins. That prevents any of them
from winning, even if one otherwise would have. Similarly
Arrow-Raynaud is not clone-immune.

Systems based solely on the M - and/or U -matrices, or solely
on the sum of vote-vectors, automatically satisfy EP. Also
TMR satisfies EP since for each candidate we may accumulate
the counts of voters ranking him kth, for all k, then use these
counts to compute median rankings. (This rank-count ma-
trix may also be used to compute scores under any weighted-
positional system. However, repeated TMR, i.e. breaking the
ties in TMR by using TMR again within the tied-subset until
a fixpoint is reached, is not possible with this approach and
presumably does not obey EP.)

A voting system whose input is preference orderings and
whose output is a“winner”subset“respects majority”if when-
ever a majority of voters say X is their favorite, then X is

52Advocated by Mike Ossipoff in numerous web postings.
53This is assuming the strategic range voters believe that ML is one of the two “frontrunners” one of whom is regarded as almost certain to win.

Oppositely, plurality voting with honest voters can elect ML, but with strategic voters cannot! This is an exceptional case where strategic-dishonest
voters actually produce a better result for society than honest ones.

54Similarly plurality voting with honest voters will elect a Majority Winner (whom 99% agree is the best candidate) but with strategic voters
may elect somebody else; with Borda voting the story is precisely the opposite in both cases. Also, plurality with honest voters can never elect a
unanimously-dominated candidate, but can with strategic voters.

55Equivalently, we have only a single WP system, but whose weights are taken from a larger field than the reals which contains a hierarchy of
infinitesimal quantities.

56But not linear or nonlinear combinations of elements of
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elected, and “respects anti-majority” if whenever a major-
ity of voters say X is worst, then X is not chosen. (Thus
the plurality system respects majority but Anti-Plurality and
Borda do not.) Woeginger [82] notes that no “weighted po-
sitional scoring system” can simultaneously respect majority
and anti-majority (for a proof consider the example we stated
immediately after table 6.3). But many multiround methods
such as Schulze, P+I, and IRV do.

The failure of most of the methods that fail AFB may be
demonstrated by table 6.5. (And Bucklin fails since if A and
B are tied, with 50% of the other top-rank votes, it almost cer-
tainly would be foolish for you to rank some other candidate
top; ER-Bucklin, i.e Bucklin with rank equalities permitted,
satisfies AFB.) In all the cases I know where AFB can be
proven (besides Approval and Range voting, where it is obvi-
ous) the proof strategy is: you show that if demoting favorite
F in order to cause X to win over Y is a valid strategy, then
raising F and X to co-equal top rank in that same planned
votes, also works (but does not betray F ). All known methods
obeying AFB allow equal rankings in ballots.

Methods satisfying CL automatically satisfy Majority Loser.

Methods satisfying “immunity to complaints” (mentioned in
§6.10) automatically satisfy CW, the Smith set property, and
UD.

Elimination methods based on point-scoring systems in each
round (e.g. P+I, Nanson-Baldwin, and IRV), or, even more
generally, whose eliminations are governed by any system
that eliminates Condorcet-Losers (e.g. Rouse and Arrow-
Raynaud) automatically fail MN (by [67] thm. 2, reproven
and extended near the end of [72]; see also [83]). Hence,
in view of the characterization of SD-satisfying systems in
[67][85][87], they also fail SD.

The status of most of our elimination methods with respect
to MA, AT, and IP have been considered by [63][58], although
the reader is warned that many of the examples of Richelson
[63] depend on simultaneous eliminations in case of ties, which
is not the usual definition of these voting methods. For exam-
ple, the Coombs and IRV variants with simultaneous elimina-
tion can easily be made to elect a Condorcet-Loser by simply
eliminating everybody else (all tied for most last-place rank-
ings or fewest first-place rankings, respectively) in the first
round; but with one-at-a-time elimination, neither Coombs
nor IRV, nor any other elimination method of their ilk, can
elect a Condorcet-Loser L because if so, eventually it would
come down to L versus some other candidate, whereupon L
would be eliminated.

Methods satisfying CW automatically satisfy MJ but auto-
matically fail IP [54][59], ME (see Schulze’s proof of this
in [72]), SD [67][83][85][87], and DH3 (table 6.4). (Thus
Woodall’s DAC method, because it satisfies IP, fails CW; and
Nanson’s method, because it satisfies CW, fails IP, SD, and
DH3.) A large class of CW-satisfying methods fail AT [83].

Jobst Heitzig points out that all anonymous neutral methods
satisfying CW (and also all WP methods other than plurality)
automatically fail LN because of table 9.2.

#voters their vote
1 A>B>C
1 B>C>A
1 C>A>B

Figure 9.2. Later harm. All three candidates are tied and
must be elected with probability 1/3 each. (Or by a slight
perturbation of this example we may make A be the unique
winner.) But C becomes both the Condorcet-Winner and the
winner in any WP system with weights w1 ≥ w2 > w3, when
the first voter switches to A > C > B; thus A is “harmed”
by these later choices. (This also shows many other methods,
e.g. Improved-Dodgson and Keener, fail LN too.) N

Methods satisfying Smith-Set automatically satisfy CW, CL,
and Mutual Majority.

Methods satisfying either IP or LN automatically satisfy AT
(and hence methods failing AT must fail IP and LN).

Theorem 3 (Condorcet methods exhibit Favorite
Betrayal). “Favorite betrayal” is sometimes “strategically
forced” in every Condorcet voting method (whether rank-
equalities are allowed or not) [We shall only consider “Con-
dorcet voting methods” which determine winners purely from
the pairwise-results matrix, and which are “anonymous” and
“neutral.”] The theorem also is true of all WP systems with
weights w1 ≥ w2 > w3; the same proof shows that.
Proof (Kevin Venzke57). As a lemma: if“favorite betrayal”
is never strategically necessary then it must be the case that
increasing the votes for A over B in the pairwise matrix can
never increase the probability that the winner comes from
{A, B}; that is, it must not move the win from some other
candidate C to A. The lemma is true because if sometimes
it were possible to move the win from C to A thusly, then a
B > A > C voter would have incentive to reverse B and A in
his ranking (and such a voter wlog would exist by adding a
constant number of each of the 6 kinds of voters if necessary
- this will always not be a problem wherever we will use the
lemma below - and note equal ranking would be inadequate).

#voters their vote
3 A = B > C
3 C = A > B
3 B = C > A
2 A > C > B
2 B > A > C
2 C > B > A

Consider the above 15-voter scenario. (If equalities are disal-
lowed, then double every vote and replace equalities X = Y
by X > Y in one copy and Y > X in the other.)

There is an A > C > B > A cycle, and the scenario is “sym-
metrical.” Hence an anonymous and neutral method must
elect each candidate with 1/3 probability.

Now suppose some A = B voters change their vote to A > B.
This would turn A into the Condorcet winner, who would
have to win with 100% probability since it is a Condorcet
method.

But the probability that the winner comes from {A, B} has
increased from 2/3 to 1, so the property of the lemma is vio-
lated. Q.E.D.

57This proof is based on one by Venzke in a June 2005 Electorama web post.
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Relative importances of these properties. The impor-
tance of a property is somewhat subjective and depends on
the application one has in mind. Thus, for political applica-
tions (in which election ties induce crises) GU failure is very
serious. EP failure similarly may be enough to simply dis-
qualify a voting system.

Although electing a Majority Loser (or failing to elect a Ma-
jority Winner, or a “reversal symmetry” scenario such as in

figure 6.26) may be embarrassing, these are rare in practice in
most systems besides Arrow-Raynaud. The DH3 pathology,
on the other hand, both has a very devastating effect (pes-
simal winner elected) and is common in practice in all the
systems that fail DH3 (albeit to a diminished extent in Lor-
ing’s system). So I regard a DH3 failure as extremely serious.
However, if for some reason we knew that strategic-dishonest
voters were not going to exist, then DH3 would be irrelevant.
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scheme CW GUMNSDIP ATLNCIafb CL UDEPMJ FOdh3 si expr. fr. runtime #
I 1 OptWin V A Y Y A A A F Y Y FM Y — F Y Y — ∞N NV 10

2 WorstWin F Y F Y F F F Y F FM F — F Y F — ∞N NV 4
II 3 RandCand F Y F F Y Y Y F Y FM F Y F Y Y 0 0 1 8

4 RandDict* F Y Y F Y Y Y Y Y FM Y* Y F (Y) Y 1 N V 11
5 RandPair* F Y Y F Y Y Y Y Y Y Y Y F Y Y 3 N ! V N 12

III 6 Plurality V A Y A A A A Y F F F Y Y Y Y Y 1 N V + N 11
7 AntiPlur V A Y A A A A Y F Y F F Y F Y F 1 N V + N 9

IV 8 P+I F Y E F F Y Y F F Y Y Y Y F Y 4 N ! V N 8
9 Nauru V A Y A A A A F F F F Y Y F Y Y 4 N ! V N 9

10 Borda V A Y A A A A F F F Y Y Y F Y F 4 N ! V N 9
11 CondrctLR YS Y Y F F F F F F FM Y Y YM Y F 6 N ! V N + N2 7
12 Black YS Y Y F F F F F F Y Y Y Y Y F 6 N ! V N + N2 8
13 ImprvDod F Y Y F F F F F F Y? Y F F Y F 8 N ! V N3 4-5
14 SchulzeBP Y Y Y F F F F Y F Y Y Y Y Y F 8 N ! V N + N3 9
15 TidemanRP Y Y Y F F F F Y F Y Y* Y Y Y F 6 N ! V N + N4 9
16 River Y Y Y F F F F Y F Y Y* Y Y F F 7 N ! V N + N2 8
17 Maxtree Y Y Y F F F F Y F Y Y* Y Y F F 9 N ! V N + N2 8
18 TMR F F Y F F F F F F F Y Y Y Y F 4 N ! V N + N lg N 5
19 Copeland Y F Y F F F F F F Y Y Y Y F F 4 N ! V N + N2 6
20 Keener F Y Y F F Y? F F F Y Y Y Y Y F 8 N ! V N2| log ǫ| 7-8

2?? Sinkhorn F Y Y F F Y? F F F Y Y Y Y Y F 8 N ! V N2| log ǫ| 7-8
21 SimpsonKr YS Y Y F F Y F F F FM Y Y YM Y F 6 N ! V N + N2 8
22 IRV F Y E F F Y Y Y* F Y Y F Y Y Y 4 N ! V N + N2 9
23 LoringIR Y Y E F F F F Y* F Y Y F Y F (F) 5 N ! V N + N2 6
24 CretneyIR Y Y E F F F F Y* F Y Y F Y F F 5 N ! V N + N2 6
?? BTR-IRV Y Y E F F F F Y* F Y Y F Y Y F 5 N ! V N + N2 7
25 Coombs F Y E F F F F F F Y Y F F Y F 4 N ! V N + N2 4
26 NansonB YS Y E F F F F F F Y Y Y Y Y F 5 N ! V N + N2 7
27 Rouse Y Y F F F F F F F Y Y Y Y Y F 6 N ! V N + N3 7
28 Raynaud Y Y F F F F F Y F Y Y Y Y Y F 6 N ! V N + N2 9
29 ArrowRayn F Y F F F Y F F F Y Y Y F Y F 6 N ! V N + N2 6
30 Bucklin F Y Y F F Y F F F F Y Y Y Y F 4 N ! V N + N2 7
31 WoodallDAC F Y F F Y F F Y F F Y F Y F (F) 9 N ! V N2 5
32 Sarvo-Plur F Y Y F Y Y Y F F Y Y Y F Y Y 7 N ! V N + N2 10
33 SmithSet† Y F Y F F Y Y Y F Y Y Y Y F F 4 N ! V N + N2 9
34 Fishburn† Y F Y F F F F Y F Y Y Y Y F F 5 N ! V N + N3 7
35 BanksSet† Y F Y F F F F Y F Y Y Y Y F F 5 N ! V N + N2 7

V 36 Dabagh V A Y A A A A F F F FM Y Y F Y F 2 (N − 1)N V 8
37 for-&-against V A Y A A A A F F F FM Y Y F Y Y* 2 (N − 1)N V 9
38 Signed V A Y A A A A F F F FM Y* Y F Y Y 2 2N V 9
39 Approval (V A) Y A A A A (F) Y Y (FM ) Y* Y F Y Y 2 2N V N 11

VI 40 Cumulatv V A Y A A A A F F F FM Y Y F Y Y 2 ∞N−1 V N 9
41 MedianRk F F Y F F F F F Y F Y* F Y F F* 4 ∞N V N 3
42 Range V A Y A A A A F Y Y FM Y Y F Y Y 3 ∞N V N 11

VII 43 Asset‡ V A Y Y Y?Y? A F Y Y FM Y† Y FR (Y) Y 3 ∞N−1 V N 8-10

Figure 9.3. Important properties of our voting systems (*=non-deterministic system, †=returns a possibly non-singleton
set of winners). [1][7][26][58][59][62] [63][66][67][83][85][87][88]. Please notify me of any errors found in this table.

The horizontal lines separate major categories of voting system: (I) non-implementable systems of only theoretical importance,
(II) non-deterministic systems [rarely if ever recommended for practical use], (III) minimally expressive (but simple) systems
where a vote is just the name of a candidate, (IV) more-expressive systems where a vote is a preference-ordering among the
N candidates, (V) systems where a vote is a real N -vector, (VI) same but now with continuum voter freedom hence maximal
expressivity, (VII) Asset is an unconventional “voting system” only useable if the candidates are sentient beings [denoted
by ‡]. Two-letter properties pertain to honest and three-letter ones to strategic voting.

The “si” column rates the subjective simplicity of the system on an 0-9 scale with 0=simplest. The “expr. fr.” column counts
how many possible kinds of votes there are in each system (measure of “expressive freedom”), the “#” column counts the
number of properties the method obeys, and the “runtime” column gives a formula such that the runtime (on a “real RAM”
computational model if V ≥ 2 and N ≥ 1) to perform the election is O(the formula).

Key: Y=obeys that property. (*=if no ties. YS=fails the stronger Smith Set property; YM=fails the stronger Mutual
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Majority property; Y† means Asset voting will obey UD if the candidates=negotiators have the same unanimous preferences
as the electorate.) F=fails to obey property. (FM if fails the stronger Majority Loser property, FR if “Y” for strategic voters,
F* means that MedianRk and for-and-against will, in the DH3 scenario, award everybody 0 so the choice will be made by
tiebreaking.) A=additive method, hence automatically obeys MN, IP, SD, AT, AFB and fails CW and also fails LN except
for a few special cases. (Approval Voting can fail to elect a Condorcet-Winner. But there always exists a way to choose the
approval votes in a manner compatible with each voter’s honest preference ordering, so that a member of the Smith Set will
be elected – hence the parentheses. Also, CW and CL failures under Approval and some other systems have the “virtue”
of perhaps being undetectable since preference orderings are not deducible from Approval ballots.) E=elimination method
based on point-scoring, hence fails MN and SD. The fact that the best-possible voting method OptWin fails LN, MJ, CW,
Smith Set, CL, and Majority Loser suggests that those six properties are not actually desirable ones for a voting system to
have. N

10 Which system is the best?

If we uncritically accept all the properties in table 9.3 as “de-
sirable” and crudely weight them all equally, then Plurality,
Approval, and Range voting are the best deterministic sys-
tems tabulated, each with 11 properties satisfied. The other
practically-useable undominated deterministic methods satis-
fying ≥ 9 properties (if we give some methods the benefit of
the doubt in some doubtful cases) are Sarvo-Plurality, Asset,
Raynaud, IRV, Schulze beatpaths, Tideman Ranked Pairs,
Nauru, and Borda.

Excluding more complicated, slower, or less-expressive meth-
ods whenever there are two competitors with otherwise similar
properties, leaves us with Range and Approval in the top
tier, and Asset, IRV, Schulze, Raynaud, Nauru, and Borda in
the second tier.58 It might seem from this that it is going to
be difficult to say with confidence that some one method is
the “best,” and rather, we should expect different methods to
be best in different situations.

But my very large computer-aided study [68] concluded that
range voting was clearly, and robustly, the best system
among those compared, across a large variety of different situ-
ations, when judged by a statistical yardstick called“Bayesian
regret.” However, when I did that study, I was not aware of
all of the voting systems described here.

Recently, I rewrote my voting-simulator software, with the
aim of including all the systems described here (some of which,
incidentally, are new inventions). The preliminary conclusion
is that range voting still clearly has the lowest Bayesian re-
grets, except that

1. asset voting can sometimes outperform it,
2. sarvo-range voting apparently always outperforms it in

the presence of any nonzero fraction of strategic voters.
(If all voters are honest, then sarvo-range and range
voting are identical.)

Asset voting is different from all the other voting systems in
that it requires the candidates to be sentient beings capable
of having preferences about, and negotiating with, each other
– as opposed to just abstract choices. It is probably not a bet-
ter choice than range voting for single-winner elections both
because of this and also because it can exhibit disturbingly
higher Bayesian regrets than range voting in certain kinds of

realistic situations, whereas in the realistic situations where
it seems superior to range voting, the improvement is not
huge. Asset voting was originally invented with the idea that
it would be a good multiwinner system, and for that purpose
it may indeed be very good. (There is also a multiwinner
“reweighted” version of range voting [70]; it also looks good.)

Sarvo-range is an excellent system. It was devised by com-
bining ideas of L.F.Cranor [16][17] about “declared strategy
voting” with my own [68] understanding of optimal range-
voting strategy. It was specifically designed to beat the“world
champion”(range voting)’s Bayesian regret scores, and exper-
iments [71] show that it succeeded. (The paper [71] will indeed
describe other more sophisticated sarvo-range variants too.)
However, sarvo-range voting is much more complicated to de-
scribe and use than range voting, and therefore may not be
acceptable in much of the real world.

What real world voters think: Smith and Greene [73]
polled random voters in New York State and found that they
prefer plurality to range voting by 70 to 45 (with 8 “don’t
know”s), because the latter is considered“too complicated.”59

Similarly Quintal [73] polled random voters near Philadelphia
and found plurality preferred to approval 296 to 238 (with 122
“don’t knows”). But range and (especially) approval voting
are simpler than almost all the other reasonable voting meth-
ods we’ve described! Smith, Quintal, and Greene therefore
concluded that efforts of devising mathematically elegant but
complex voting systems were “mere mental masturbation” in-
capable of real world success and advocated “Keep It Simple
Stupid.”
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